| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmul.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 2 |
|
mbfmul.2 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| 3 |
|
mbfmul.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 4 |
|
mbfmul.4 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) |
| 5 |
|
mbfmul.5 |
⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) |
| 6 |
|
mbfmul.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 7 |
|
mbfmul.7 |
⊢ ( 𝜑 → 𝑄 : ℕ ⟶ dom ∫1 ) |
| 8 |
|
mbfmul.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
| 9 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 10 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 11 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 12 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 14 |
11 13
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 15 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 16 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 18 |
9 10 14 14 15 16 17
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 20 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 21 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℤ ) |
| 22 |
|
nnex |
⊢ ℕ ∈ V |
| 23 |
22
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ V |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ V ) |
| 25 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 26 |
|
i1ff |
⊢ ( ( 𝑃 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 29 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 30 |
14 29
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 31 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 33 |
28 32
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 35 |
34
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 37 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 38 |
|
i1ff |
⊢ ( ( 𝑄 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 40 |
39
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 41 |
40 32
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 43 |
42
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 45 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 46 |
45
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑄 ‘ 𝑛 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 48 |
47
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 49 |
46 48
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 50 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 51 |
|
ovex |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ V |
| 52 |
49 50 51
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 54 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 55 |
|
fvex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V |
| 56 |
46 54 55
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 57 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 58 |
|
fvex |
⊢ ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V |
| 59 |
48 57 58
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 60 |
56 59
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 62 |
53 61
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) |
| 63 |
19 21 6 24 8 36 44 62
|
climmul |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ⇝ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 64 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
| 65 |
64
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 66 |
27
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) Fn ℝ ) |
| 67 |
39
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) Fn ℝ ) |
| 68 |
|
reex |
⊢ ℝ ∈ V |
| 69 |
68
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℝ ∈ V ) |
| 70 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 71 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 72 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 73 |
66 67 69 69 70 71 72
|
offval |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 74 |
25 37
|
i1fmul |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ dom ∫1 ) |
| 75 |
|
i1fmbf |
⊢ ( ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ dom ∫1 → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ MblFn ) |
| 76 |
74 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ MblFn ) |
| 77 |
73 76
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 78 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol ) |
| 79 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn ) |
| 80 |
77 78 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn ) |
| 81 |
65 80
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 82 |
|
ovex |
⊢ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V |
| 83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V ) |
| 84 |
19 20 63 81 83
|
mbflim |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 85 |
18 84
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |