Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
3 |
1 2
|
mgmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
5 |
4
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
6 |
1 2
|
mgmhmf |
⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
8 |
7
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
9 |
|
fndmin |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
10 |
5 8 9
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
11 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) |
12 |
11
|
a1i |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ) |
13 |
|
mgmhmrcl |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
14 |
13
|
simpld |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝑆 ∈ Mgm ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝑆 ∈ Mgm ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑆 ∈ Mgm ) |
17 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
18 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
20 |
1 19
|
mgmcl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
21 |
16 17 18 20
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
22 |
|
simplrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
23 |
|
simprr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
24 |
22 23
|
oveq12d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
25 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
26 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
27 |
1 19 26
|
mgmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
28 |
25 17 18 27
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
29 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
30 |
1 19 26
|
mgmhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
31 |
29 17 18 30
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
32 |
24 28 31
|
3eqtr4d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
34 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
36 |
35
|
elrab |
⊢ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
37 |
21 32 36
|
sylanbrc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
38 |
37
|
expr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
39 |
38
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
40 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
42 |
40 41
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
43 |
42
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
44 |
39 43
|
sylibr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
45 |
44
|
expr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
47 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
49 |
47 48
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
50 |
49
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
51 |
46 50
|
sylibr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
52 |
1 19
|
issubmgm |
⊢ ( 𝑆 ∈ Mgm → ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMgm ‘ 𝑆 ) ↔ ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
53 |
15 52
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMgm ‘ 𝑆 ) ↔ ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
54 |
12 51 53
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMgm ‘ 𝑆 ) ) |
55 |
10 54
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMgm ‘ 𝑆 ) ) |