Step |
Hyp |
Ref |
Expression |
1 |
|
mpobi123f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
mpobi123f.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
mpobi123f.3 |
⊢ Ⅎ 𝑦 𝐴 |
4 |
|
mpobi123f.4 |
⊢ Ⅎ 𝑦 𝐵 |
5 |
|
mpobi123f.5 |
⊢ Ⅎ 𝑦 𝐶 |
6 |
|
mpobi123f.6 |
⊢ Ⅎ 𝑦 𝐷 |
7 |
|
mpobi123f.7 |
⊢ Ⅎ 𝑥 𝐶 |
8 |
|
mpobi123f.8 |
⊢ Ⅎ 𝑥 𝐷 |
9 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
10 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
11 |
9 10
|
alrimi |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
12 |
3
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
13 |
4
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐵 |
14 |
12 13
|
nfbi |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
15 |
|
ax-5 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
16 |
14 15
|
alrimi |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
17 |
11 16
|
sylg |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
18 |
5 6
|
nfeq |
⊢ Ⅎ 𝑦 𝐶 = 𝐷 |
19 |
|
eleq2 |
⊢ ( 𝐶 = 𝐷 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
20 |
18 19
|
alrimi |
⊢ ( 𝐶 = 𝐷 → ∀ 𝑦 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
21 |
|
ax-5 |
⊢ ( ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
22 |
21
|
alimi |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
23 |
7
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
24 |
8
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 |
25 |
23 24
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) |
26 |
25
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) |
27 |
26
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) |
28 |
27
|
nf5ri |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
29 |
20 22 28
|
3syl |
⊢ ( 𝐶 = 𝐷 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
30 |
|
id |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
31 |
30
|
alanimi |
⊢ ( ( ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
32 |
31
|
alanimi |
⊢ ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
33 |
32
|
alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
34 |
17 29 33
|
syl2an |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
35 |
|
eqeq2 |
⊢ ( 𝐸 = 𝐹 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
36 |
35
|
alrimiv |
⊢ ( 𝐸 = 𝐹 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
37 |
36
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
38 |
|
hbra1 |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑦 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
39 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
40 |
38 39
|
alrimih |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
41 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ↔ ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
42 |
41
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
43 |
40 42
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
44 |
43
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
45 |
|
hbra1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) → ∀ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
46 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
47 |
45 46
|
alrimih |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
48 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
49 |
48
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
50 |
12
|
19.21 |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
51 |
50
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
52 |
49 51
|
sylbbr |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
53 |
44 47 52
|
3syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
54 |
37 53
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
55 |
|
id |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
56 |
55
|
alanimi |
⊢ ( ( ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
57 |
56
|
alanimi |
⊢ ( ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
58 |
57
|
alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
59 |
34 54 58
|
syl2an |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
60 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑥 ∈ 𝐴 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
61 |
60
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
62 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
63 |
62
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
64 |
61 63
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
65 |
|
tsbi2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
66 |
65
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
67 |
66
|
a1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
68 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
69 |
67 68
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
70 |
69
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
71 |
64 70
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
72 |
|
idd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴 ) ) |
73 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
74 |
73
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
75 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
76 |
75
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
77 |
74 76
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
78 |
|
tsim2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
79 |
78
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
80 |
77 79
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
81 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
82 |
80 81
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
83 |
82
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
84 |
|
tsbi3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
85 |
84
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) ) |
86 |
83 85
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ) ) |
87 |
72 86
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
88 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
89 |
88
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) ) |
90 |
87 89
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
91 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
92 |
91
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
93 |
90 92
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
94 |
71 93
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → 𝑥 ∈ 𝐴 ) |
95 |
94
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑥 ∈ 𝐴 ) ) |
96 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
97 |
78
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
98 |
96 97
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
99 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
100 |
99
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
101 |
98 100
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
102 |
95 101
|
mpdd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
103 |
|
notnotr |
⊢ ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) |
104 |
103
|
a1i |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
105 |
91
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
106 |
104 105
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
107 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑦 ∈ 𝐷 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
108 |
107
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑦 ∈ 𝐷 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) ) |
109 |
106 108
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑦 ∈ 𝐷 ) ) |
110 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
111 |
110
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
112 |
75
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
113 |
111 112
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
114 |
78
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
115 |
113 114
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
116 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
117 |
115 116
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
118 |
109 117
|
sylibrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑦 ∈ 𝐶 ) ) |
119 |
94
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑥 ∈ 𝐴 ) ) |
120 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
121 |
78
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
122 |
120 121
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
123 |
99
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
124 |
122 123
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
125 |
119 124
|
mpdd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
126 |
118 125
|
mpdd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
127 |
119 118
|
jcad |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
128 |
|
tsim3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
129 |
128
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
130 |
120 129
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
131 |
|
tsbi1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
132 |
131
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
133 |
130 132
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
134 |
104 133
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
135 |
|
tsan1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
136 |
135
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
137 |
134 136
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ 𝑧 = 𝐸 ) ) ) |
138 |
127 137
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ 𝑧 = 𝐸 ) ) |
139 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑧 = 𝐹 ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
140 |
139
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑧 = 𝐹 ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
141 |
104 140
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑧 = 𝐹 ) ) |
142 |
|
tsbi3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
143 |
142
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
144 |
143
|
or32dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ ¬ 𝑧 = 𝐹 ) ) ) |
145 |
141 144
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
146 |
138 145
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
147 |
126 146
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) |
148 |
147
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
149 |
128
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
150 |
96 149
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
151 |
65
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
152 |
150 151
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
153 |
148 152
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
154 |
62
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
155 |
153 154
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
156 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
157 |
156
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
158 |
155 157
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑦 ∈ 𝐶 ) ) |
159 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑧 = 𝐸 ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
160 |
159
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑧 = 𝐸 ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
161 |
153 160
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑧 = 𝐸 ) ) |
162 |
95 82
|
sylibd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑥 ∈ 𝐵 ) ) |
163 |
158 117
|
sylibd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑦 ∈ 𝐷 ) ) |
164 |
162 163
|
jcad |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
165 |
|
tsan1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ 𝑧 = 𝐹 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
166 |
165
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ 𝑧 = 𝐹 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
167 |
148 166
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ 𝑧 = 𝐹 ) ) ) |
168 |
164 167
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ 𝑧 = 𝐹 ) ) |
169 |
|
tsbi4 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
170 |
169
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
171 |
170
|
or32dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ 𝑧 = 𝐹 ) ) ) |
172 |
168 171
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
173 |
161 172
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
174 |
|
tsim1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ 𝑦 ∈ 𝐶 ∨ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
175 |
174
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ 𝐶 ∨ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
176 |
175
|
or32dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
177 |
173 176
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
178 |
158 177
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
179 |
102 178
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ⊥ ) |
180 |
179
|
efald2 |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
181 |
180
|
alimi |
⊢ ( ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
182 |
181
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
183 |
|
oprabbi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) } ) |
184 |
59 182 183
|
3syl |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) } ) |
185 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) } |
186 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ 𝐹 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) } |
187 |
184 185 186
|
3eqtr4g |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ 𝐹 ) ) |