| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpobi123f.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
mpobi123f.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
mpobi123f.3 |
⊢ Ⅎ 𝑦 𝐴 |
| 4 |
|
mpobi123f.4 |
⊢ Ⅎ 𝑦 𝐵 |
| 5 |
|
mpobi123f.5 |
⊢ Ⅎ 𝑦 𝐶 |
| 6 |
|
mpobi123f.6 |
⊢ Ⅎ 𝑦 𝐷 |
| 7 |
|
mpobi123f.7 |
⊢ Ⅎ 𝑥 𝐶 |
| 8 |
|
mpobi123f.8 |
⊢ Ⅎ 𝑥 𝐷 |
| 9 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
| 10 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 11 |
9 10
|
alrimi |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 12 |
3
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 13 |
4
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐵 |
| 14 |
12 13
|
nfbi |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
| 15 |
|
ax-5 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 16 |
14 15
|
alrimi |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 17 |
11 16
|
sylg |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 18 |
5 6
|
nfeq |
⊢ Ⅎ 𝑦 𝐶 = 𝐷 |
| 19 |
|
eleq2 |
⊢ ( 𝐶 = 𝐷 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 20 |
18 19
|
alrimi |
⊢ ( 𝐶 = 𝐷 → ∀ 𝑦 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 21 |
|
ax-5 |
⊢ ( ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 22 |
21
|
alimi |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 23 |
7
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
| 24 |
8
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 |
| 25 |
23 24
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) |
| 26 |
25
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) |
| 27 |
26
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) |
| 28 |
27
|
nf5ri |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 29 |
20 22 28
|
3syl |
⊢ ( 𝐶 = 𝐷 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 30 |
|
id |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
| 31 |
30
|
alanimi |
⊢ ( ( ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
| 32 |
31
|
alanimi |
⊢ ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
| 33 |
32
|
alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
| 34 |
17 29 33
|
syl2an |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) |
| 35 |
|
eqeq2 |
⊢ ( 𝐸 = 𝐹 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
| 36 |
35
|
alrimiv |
⊢ ( 𝐸 = 𝐹 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
| 37 |
36
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
| 38 |
|
hbra1 |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑦 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) |
| 39 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 40 |
38 39
|
alrimih |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 41 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ↔ ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 42 |
41
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 43 |
40 42
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 44 |
43
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 45 |
|
hbra1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) → ∀ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 46 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 47 |
45 46
|
alrimih |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 48 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 49 |
48
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 50 |
12
|
19.21 |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 51 |
50
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 52 |
49 51
|
sylbbr |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 53 |
37 44 47 52
|
4syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 54 |
|
id |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 55 |
54
|
alanimi |
⊢ ( ( ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 56 |
55
|
alanimi |
⊢ ( ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 57 |
56
|
alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 58 |
34 53 57
|
syl2an |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 59 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑥 ∈ 𝐴 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 60 |
59
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 61 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
| 62 |
61
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
| 63 |
60 62
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
| 64 |
|
tsbi2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 65 |
64
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 66 |
65
|
a1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 67 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 68 |
66 67
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 69 |
68
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 70 |
63 69
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 71 |
|
idd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 72 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
| 73 |
72
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
| 74 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 75 |
74
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
| 76 |
73 75
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 77 |
|
tsim2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 78 |
77
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 79 |
76 78
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 80 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 81 |
79 80
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 82 |
81
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 83 |
|
tsbi3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 84 |
83
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) ) |
| 85 |
82 84
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 86 |
71 85
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 87 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 88 |
87
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) ) |
| 89 |
86 88
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 90 |
|
tsan2 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 91 |
90
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 92 |
89 91
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 93 |
70 92
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 94 |
93
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑥 ∈ 𝐴 ) ) |
| 95 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 96 |
77
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 97 |
95 96
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 98 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 99 |
98
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
| 100 |
97 99
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 101 |
94 100
|
mpdd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 102 |
|
notnotr |
⊢ ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) |
| 103 |
102
|
a1i |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 104 |
90
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 105 |
103 104
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 106 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑦 ∈ 𝐷 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 107 |
106
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑦 ∈ 𝐷 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) ) |
| 108 |
105 107
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑦 ∈ 𝐷 ) ) |
| 109 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
| 110 |
109
|
ord |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ) ) |
| 111 |
74
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
| 112 |
110 111
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 113 |
77
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 114 |
112 113
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 115 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 116 |
114 115
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 117 |
108 116
|
sylibrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑦 ∈ 𝐶 ) ) |
| 118 |
93
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑥 ∈ 𝐴 ) ) |
| 119 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 120 |
77
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 121 |
119 120
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 122 |
98
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) ) ) |
| 123 |
121 122
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 124 |
118 123
|
mpdd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 125 |
117 124
|
mpdd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 126 |
118 117
|
jcad |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 127 |
|
tsim3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 128 |
127
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 129 |
119 128
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 130 |
|
tsbi1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 131 |
130
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 132 |
129 131
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 133 |
103 132
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
| 134 |
|
tsan1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
| 135 |
134
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
| 136 |
133 135
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ 𝑧 = 𝐸 ) ) ) |
| 137 |
126 136
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ 𝑧 = 𝐸 ) ) |
| 138 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑧 = 𝐹 ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 139 |
138
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑧 = 𝐹 ∨ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 140 |
103 139
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → 𝑧 = 𝐹 ) ) |
| 141 |
|
tsbi3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( 𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 142 |
141
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 143 |
142
|
or32dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ ¬ 𝑧 = 𝐹 ) ) ) |
| 144 |
140 143
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ( 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 145 |
137 144
|
cnf1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) → ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 146 |
125 145
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) |
| 147 |
146
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 148 |
127
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) ) |
| 149 |
95 148
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 150 |
64
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) ) |
| 151 |
149 150
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 152 |
147 151
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
| 153 |
61
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
| 154 |
152 153
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 155 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 156 |
155
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
| 157 |
154 156
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑦 ∈ 𝐶 ) ) |
| 158 |
|
tsan3 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( 𝑧 = 𝐸 ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) |
| 159 |
158
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑧 = 𝐸 ∨ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ) ) ) |
| 160 |
152 159
|
cnfn2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑧 = 𝐸 ) ) |
| 161 |
94 81
|
sylibd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑥 ∈ 𝐵 ) ) |
| 162 |
157 116
|
sylibd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → 𝑦 ∈ 𝐷 ) ) |
| 163 |
161 162
|
jcad |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 164 |
|
tsan1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ 𝑧 = 𝐹 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 165 |
164
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ 𝑧 = 𝐹 ) ∨ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) ) |
| 166 |
147 165
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∨ ¬ 𝑧 = 𝐹 ) ) ) |
| 167 |
163 166
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ 𝑧 = 𝐹 ) ) |
| 168 |
|
tsbi4 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 169 |
168
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹 ) ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 170 |
169
|
or32dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ 𝑧 = 𝐹 ) ) ) |
| 171 |
167 170
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑧 = 𝐸 ∨ ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 172 |
160 171
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) |
| 173 |
|
tsim1 |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ( ¬ 𝑦 ∈ 𝐶 ∨ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 174 |
173
|
a1d |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ 𝐶 ∨ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 175 |
174
|
or32dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ∨ ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 176 |
172 175
|
cnf2dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑦 ∈ 𝐶 ∨ ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) ) |
| 177 |
157 176
|
cnfn1dd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) |
| 178 |
101 177
|
contrd |
⊢ ( ¬ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) → ⊥ ) |
| 179 |
178
|
efald2 |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 180 |
179
|
alimi |
⊢ ( ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 181 |
180
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → ( 𝑧 = 𝐸 ↔ 𝑧 = 𝐹 ) ) ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 182 |
|
oprabbi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) } ) |
| 183 |
58 181 182
|
3syl |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) } ) |
| 184 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑧 = 𝐸 ) } |
| 185 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ 𝐹 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐹 ) } |
| 186 |
183 184 185
|
3eqtr4g |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝐸 = 𝐹 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ 𝐹 ) ) |