Step |
Hyp |
Ref |
Expression |
1 |
|
mulginvcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulginvcom.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulginvcom.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) |
5 |
|
fvoveq1 |
⊢ ( 𝑥 = 0 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
8 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) |
11 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
14 |
|
fvoveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |
17 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
20 |
19 3
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
23 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
24 |
1 19 2
|
mulg0 |
⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
26 |
1 19 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 0 · 𝑋 ) ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
29 |
22 25 28
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) |
30 |
|
oveq2 |
⊢ ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
32 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
34 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑦 ∈ ℕ0 ) |
35 |
23
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
36 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
37 |
1 2 36
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
38 |
33 34 35 37
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
39 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
40 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
41 |
40
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑦 ∈ ℤ ) |
42 |
1 2 36
|
mulgaddcom |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
43 |
39 41 35 42
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
44 |
38 43
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
46 |
1 2 36
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
47 |
32 46
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
48 |
47
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) |
49 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
50 |
40 49
|
syl3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
51 |
1 36 3
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
52 |
50 51
|
syld3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
53 |
48 52
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
55 |
31 45 54
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
56 |
55
|
3exp1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℕ0 → ( 𝑋 ∈ 𝐵 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) ) |
57 |
56
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) ) |
58 |
57
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) |
59 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
60 |
23
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
61 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
62 |
60 61
|
syld3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
64 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
66 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
67 |
65 66
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
68 |
67
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
69 |
63 68
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) |
70 |
69
|
3exp1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
71 |
70
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℤ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
72 |
71
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℤ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) |
73 |
59 72
|
syl5 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) |
74 |
6 9 12 15 18 29 58 73
|
zindd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
75 |
74
|
ex |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) ) |
76 |
75
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) ) |
77 |
76
|
3imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |