| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 2 |
|
pgpfac1.s |
⊢ 𝑆 = ( 𝐾 ‘ { 𝐴 } ) |
| 3 |
|
pgpfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 4 |
|
pgpfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 5 |
|
pgpfac1.e |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
| 6 |
|
pgpfac1.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 7 |
|
pgpfac1.l |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 8 |
|
pgpfac1.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
| 9 |
|
pgpfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 10 |
|
pgpfac1.n |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 11 |
|
pgpfac1.oe |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) |
| 12 |
|
pgpfac1.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 |
|
pgpfac1.au |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 14 |
|
pgpfac1.w |
⊢ ( 𝜑 → 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
|
pgpfac1.i |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑊 ) = { 0 } ) |
| 16 |
|
pgpfac1.ss |
⊢ ( 𝜑 → ( 𝑆 ⊕ 𝑊 ) ⊆ 𝑈 ) |
| 17 |
|
pgpfac1.2 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤 ) → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ 𝑤 ) ) |
| 18 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝑆 ⊕ 𝑊 ) ⊆ 𝑈 ) |
| 19 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 20 |
3
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 21 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 22 |
9 19 20 21
|
4syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 24 |
|
eldifi |
⊢ ( 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) → 𝐶 ∈ 𝑈 ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐶 ∈ 𝑈 ) |
| 26 |
25
|
snssd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → { 𝐶 } ⊆ 𝑈 ) |
| 27 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 28 |
1
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ { 𝐶 } ⊆ 𝑈 ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ { 𝐶 } ) ⊆ 𝑈 ) |
| 29 |
23 26 27 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝐾 ‘ { 𝐶 } ) ⊆ 𝑈 ) |
| 30 |
3
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ 𝐵 ) |
| 31 |
12 30
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
| 32 |
31 13
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 33 |
1
|
mrcsncl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 34 |
22 32 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 35 |
2 34
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 36 |
7
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 37 |
9 35 14 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 39 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑈 ) → 𝐶 ∈ 𝐵 ) |
| 40 |
24 39
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐶 ∈ 𝐵 ) |
| 41 |
1
|
mrcsncl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐶 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 42 |
23 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝐾 ‘ { 𝐶 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 43 |
7
|
lsmlub |
⊢ ( ( ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ { 𝐶 } ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑆 ⊕ 𝑊 ) ⊆ 𝑈 ∧ ( 𝐾 ‘ { 𝐶 } ) ⊆ 𝑈 ) ↔ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊆ 𝑈 ) ) |
| 44 |
38 42 27 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( ( 𝑆 ⊕ 𝑊 ) ⊆ 𝑈 ∧ ( 𝐾 ‘ { 𝐶 } ) ⊆ 𝑈 ) ↔ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊆ 𝑈 ) ) |
| 45 |
18 29 44
|
mpbi2and |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊆ 𝑈 ) |
| 46 |
7
|
lsmub1 |
⊢ ( ( ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ { 𝐶 } ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 ⊕ 𝑊 ) ⊆ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 47 |
38 42 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝑆 ⊕ 𝑊 ) ⊆ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 48 |
7
|
lsmub2 |
⊢ ( ( ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ { 𝐶 } ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ { 𝐶 } ) ⊆ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 49 |
38 42 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝐾 ‘ { 𝐶 } ) ⊆ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 50 |
40
|
snssd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → { 𝐶 } ⊆ 𝐵 ) |
| 51 |
23 1 50
|
mrcssidd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → { 𝐶 } ⊆ ( 𝐾 ‘ { 𝐶 } ) ) |
| 52 |
|
snssg |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐶 ∈ ( 𝐾 ‘ { 𝐶 } ) ↔ { 𝐶 } ⊆ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 53 |
40 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝐶 ∈ ( 𝐾 ‘ { 𝐶 } ) ↔ { 𝐶 } ⊆ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 54 |
51 53
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐶 ∈ ( 𝐾 ‘ { 𝐶 } ) ) |
| 55 |
49 54
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐶 ∈ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 56 |
|
eldifn |
⊢ ( 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) → ¬ 𝐶 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ¬ 𝐶 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
| 58 |
47 55 57
|
ssnelpssd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( 𝑆 ⊕ 𝑊 ) ⊊ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 59 |
7
|
lsmub1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( 𝑆 ⊕ 𝑊 ) ) |
| 60 |
35 14 59
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑆 ⊕ 𝑊 ) ) |
| 61 |
32
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝐵 ) |
| 62 |
22 1 61
|
mrcssidd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) |
| 63 |
62 2
|
sseqtrrdi |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝑆 ) |
| 64 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑈 → ( 𝐴 ∈ 𝑆 ↔ { 𝐴 } ⊆ 𝑆 ) ) |
| 65 |
13 64
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ↔ { 𝐴 } ⊆ 𝑆 ) ) |
| 66 |
63 65
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 67 |
60 66
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐴 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
| 69 |
47 68
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐴 ∈ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) |
| 70 |
|
psseq1 |
⊢ ( 𝑤 = ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) → ( 𝑤 ⊊ 𝑈 ↔ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 ) ) |
| 71 |
|
eleq2 |
⊢ ( 𝑤 = ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) → ( 𝐴 ∈ 𝑤 ↔ 𝐴 ∈ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) |
| 72 |
70 71
|
anbi12d |
⊢ ( 𝑤 = ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) → ( ( 𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤 ) ↔ ( ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 ∧ 𝐴 ∈ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) ) |
| 73 |
|
psseq2 |
⊢ ( 𝑤 = ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) → ( ( 𝑆 ⊕ 𝑊 ) ⊊ 𝑤 ↔ ( 𝑆 ⊕ 𝑊 ) ⊊ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) |
| 74 |
73
|
notbid |
⊢ ( 𝑤 = ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) → ( ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ 𝑤 ↔ ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) |
| 75 |
72 74
|
imbi12d |
⊢ ( 𝑤 = ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) → ( ( ( 𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤 ) → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ 𝑤 ) ↔ ( ( ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 ∧ 𝐴 ∈ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) ) |
| 76 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ∀ 𝑤 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤 ) → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ 𝑤 ) ) |
| 77 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → 𝐺 ∈ Abel ) |
| 78 |
7
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ { 𝐶 } ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 79 |
77 38 42 78
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 80 |
75 76 79
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 ∧ 𝐴 ∈ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) |
| 81 |
69 80
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ) ) |
| 82 |
58 81
|
mt2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ¬ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 ) |
| 83 |
|
npss |
⊢ ( ¬ ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊊ 𝑈 ↔ ( ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊆ 𝑈 → ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) = 𝑈 ) ) |
| 84 |
82 83
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) ⊆ 𝑈 → ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) = 𝑈 ) ) |
| 85 |
45 84
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) → ( ( 𝑆 ⊕ 𝑊 ) ⊕ ( 𝐾 ‘ { 𝐶 } ) ) = 𝑈 ) |