| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
| 3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
| 4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
| 5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
| 6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
| 7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
| 8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
| 9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
| 10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
| 11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
| 12 |
|
pgpfac1.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 13 |
|
pgpfac1.au |
|- ( ph -> A e. U ) |
| 14 |
|
pgpfac1.w |
|- ( ph -> W e. ( SubGrp ` G ) ) |
| 15 |
|
pgpfac1.i |
|- ( ph -> ( S i^i W ) = { .0. } ) |
| 16 |
|
pgpfac1.ss |
|- ( ph -> ( S .(+) W ) C_ U ) |
| 17 |
|
pgpfac1.2 |
|- ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
| 18 |
16
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( S .(+) W ) C_ U ) |
| 19 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 20 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
| 21 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` B ) -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 22 |
9 19 20 21
|
4syl |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 24 |
|
eldifi |
|- ( C e. ( U \ ( S .(+) W ) ) -> C e. U ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> C e. U ) |
| 26 |
25
|
snssd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> { C } C_ U ) |
| 27 |
12
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> U e. ( SubGrp ` G ) ) |
| 28 |
1
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ { C } C_ U /\ U e. ( SubGrp ` G ) ) -> ( K ` { C } ) C_ U ) |
| 29 |
23 26 27 28
|
syl3anc |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( K ` { C } ) C_ U ) |
| 30 |
3
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
| 31 |
12 30
|
syl |
|- ( ph -> U C_ B ) |
| 32 |
31 13
|
sseldd |
|- ( ph -> A e. B ) |
| 33 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 34 |
22 32 33
|
syl2anc |
|- ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 35 |
2 34
|
eqeltrid |
|- ( ph -> S e. ( SubGrp ` G ) ) |
| 36 |
7
|
lsmsubg2 |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 37 |
9 35 14 36
|
syl3anc |
|- ( ph -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 39 |
31
|
sselda |
|- ( ( ph /\ C e. U ) -> C e. B ) |
| 40 |
24 39
|
sylan2 |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> C e. B ) |
| 41 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ C e. B ) -> ( K ` { C } ) e. ( SubGrp ` G ) ) |
| 42 |
23 40 41
|
syl2anc |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( K ` { C } ) e. ( SubGrp ` G ) ) |
| 43 |
7
|
lsmlub |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ ( K ` { C } ) e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( ( S .(+) W ) C_ U /\ ( K ` { C } ) C_ U ) <-> ( ( S .(+) W ) .(+) ( K ` { C } ) ) C_ U ) ) |
| 44 |
38 42 27 43
|
syl3anc |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( ( S .(+) W ) C_ U /\ ( K ` { C } ) C_ U ) <-> ( ( S .(+) W ) .(+) ( K ` { C } ) ) C_ U ) ) |
| 45 |
18 29 44
|
mpbi2and |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( S .(+) W ) .(+) ( K ` { C } ) ) C_ U ) |
| 46 |
7
|
lsmub1 |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ ( K ` { C } ) e. ( SubGrp ` G ) ) -> ( S .(+) W ) C_ ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 47 |
38 42 46
|
syl2anc |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( S .(+) W ) C_ ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 48 |
7
|
lsmub2 |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ ( K ` { C } ) e. ( SubGrp ` G ) ) -> ( K ` { C } ) C_ ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 49 |
38 42 48
|
syl2anc |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( K ` { C } ) C_ ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 50 |
40
|
snssd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> { C } C_ B ) |
| 51 |
23 1 50
|
mrcssidd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> { C } C_ ( K ` { C } ) ) |
| 52 |
|
snssg |
|- ( C e. B -> ( C e. ( K ` { C } ) <-> { C } C_ ( K ` { C } ) ) ) |
| 53 |
40 52
|
syl |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( C e. ( K ` { C } ) <-> { C } C_ ( K ` { C } ) ) ) |
| 54 |
51 53
|
mpbird |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> C e. ( K ` { C } ) ) |
| 55 |
49 54
|
sseldd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> C e. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 56 |
|
eldifn |
|- ( C e. ( U \ ( S .(+) W ) ) -> -. C e. ( S .(+) W ) ) |
| 57 |
56
|
adantl |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> -. C e. ( S .(+) W ) ) |
| 58 |
47 55 57
|
ssnelpssd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( S .(+) W ) C. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 59 |
7
|
lsmub1 |
|- ( ( S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> S C_ ( S .(+) W ) ) |
| 60 |
35 14 59
|
syl2anc |
|- ( ph -> S C_ ( S .(+) W ) ) |
| 61 |
32
|
snssd |
|- ( ph -> { A } C_ B ) |
| 62 |
22 1 61
|
mrcssidd |
|- ( ph -> { A } C_ ( K ` { A } ) ) |
| 63 |
62 2
|
sseqtrrdi |
|- ( ph -> { A } C_ S ) |
| 64 |
|
snssg |
|- ( A e. U -> ( A e. S <-> { A } C_ S ) ) |
| 65 |
13 64
|
syl |
|- ( ph -> ( A e. S <-> { A } C_ S ) ) |
| 66 |
63 65
|
mpbird |
|- ( ph -> A e. S ) |
| 67 |
60 66
|
sseldd |
|- ( ph -> A e. ( S .(+) W ) ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> A e. ( S .(+) W ) ) |
| 69 |
47 68
|
sseldd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> A e. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) |
| 70 |
|
psseq1 |
|- ( w = ( ( S .(+) W ) .(+) ( K ` { C } ) ) -> ( w C. U <-> ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U ) ) |
| 71 |
|
eleq2 |
|- ( w = ( ( S .(+) W ) .(+) ( K ` { C } ) ) -> ( A e. w <-> A e. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) |
| 72 |
70 71
|
anbi12d |
|- ( w = ( ( S .(+) W ) .(+) ( K ` { C } ) ) -> ( ( w C. U /\ A e. w ) <-> ( ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U /\ A e. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) ) |
| 73 |
|
psseq2 |
|- ( w = ( ( S .(+) W ) .(+) ( K ` { C } ) ) -> ( ( S .(+) W ) C. w <-> ( S .(+) W ) C. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) |
| 74 |
73
|
notbid |
|- ( w = ( ( S .(+) W ) .(+) ( K ` { C } ) ) -> ( -. ( S .(+) W ) C. w <-> -. ( S .(+) W ) C. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) |
| 75 |
72 74
|
imbi12d |
|- ( w = ( ( S .(+) W ) .(+) ( K ` { C } ) ) -> ( ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) <-> ( ( ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U /\ A e. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) -> -. ( S .(+) W ) C. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) ) |
| 76 |
17
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
| 77 |
9
|
adantr |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> G e. Abel ) |
| 78 |
7
|
lsmsubg2 |
|- ( ( G e. Abel /\ ( S .(+) W ) e. ( SubGrp ` G ) /\ ( K ` { C } ) e. ( SubGrp ` G ) ) -> ( ( S .(+) W ) .(+) ( K ` { C } ) ) e. ( SubGrp ` G ) ) |
| 79 |
77 38 42 78
|
syl3anc |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( S .(+) W ) .(+) ( K ` { C } ) ) e. ( SubGrp ` G ) ) |
| 80 |
75 76 79
|
rspcdva |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U /\ A e. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) -> -. ( S .(+) W ) C. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) |
| 81 |
69 80
|
mpan2d |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U -> -. ( S .(+) W ) C. ( ( S .(+) W ) .(+) ( K ` { C } ) ) ) ) |
| 82 |
58 81
|
mt2d |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> -. ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U ) |
| 83 |
|
npss |
|- ( -. ( ( S .(+) W ) .(+) ( K ` { C } ) ) C. U <-> ( ( ( S .(+) W ) .(+) ( K ` { C } ) ) C_ U -> ( ( S .(+) W ) .(+) ( K ` { C } ) ) = U ) ) |
| 84 |
82 83
|
sylib |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( ( S .(+) W ) .(+) ( K ` { C } ) ) C_ U -> ( ( S .(+) W ) .(+) ( K ` { C } ) ) = U ) ) |
| 85 |
45 84
|
mpd |
|- ( ( ph /\ C e. ( U \ ( S .(+) W ) ) ) -> ( ( S .(+) W ) .(+) ( K ` { C } ) ) = U ) |