| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
| 3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
| 4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
| 5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
| 6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
| 7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
| 8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
| 9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
| 10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
| 11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
| 12 |
|
pgpfac1.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 13 |
|
pgpfac1.au |
|- ( ph -> A e. U ) |
| 14 |
|
pgpfac1.w |
|- ( ph -> W e. ( SubGrp ` G ) ) |
| 15 |
|
pgpfac1.i |
|- ( ph -> ( S i^i W ) = { .0. } ) |
| 16 |
|
pgpfac1.ss |
|- ( ph -> ( S .(+) W ) C_ U ) |
| 17 |
|
pgpfac1.2 |
|- ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
| 18 |
|
pgpfac1.c |
|- ( ph -> C e. ( U \ ( S .(+) W ) ) ) |
| 19 |
|
pgpfac1.mg |
|- .x. = ( .g ` G ) |
| 20 |
18
|
eldifbd |
|- ( ph -> -. C e. ( S .(+) W ) ) |
| 21 |
18
|
eldifad |
|- ( ph -> C e. U ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> C e. U ) |
| 23 |
|
pgpprm |
|- ( P pGrp G -> P e. Prime ) |
| 24 |
8 23
|
syl |
|- ( ph -> P e. Prime ) |
| 25 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 26 |
24 25
|
syl |
|- ( ph -> P e. ZZ ) |
| 27 |
19
|
subgmulgcl |
|- ( ( U e. ( SubGrp ` G ) /\ P e. ZZ /\ C e. U ) -> ( P .x. C ) e. U ) |
| 28 |
12 26 21 27
|
syl3anc |
|- ( ph -> ( P .x. C ) e. U ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> ( P .x. C ) e. U ) |
| 30 |
|
simpr |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> -. ( P .x. C ) e. ( S .(+) W ) ) |
| 31 |
29 30
|
eldifd |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> ( P .x. C ) e. ( U \ ( S .(+) W ) ) ) |
| 32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pgpfac1lem1 |
|- ( ( ph /\ ( P .x. C ) e. ( U \ ( S .(+) W ) ) ) -> ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) = U ) |
| 33 |
31 32
|
syldan |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) = U ) |
| 34 |
22 33
|
eleqtrrd |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) ) |
| 35 |
34
|
ex |
|- ( ph -> ( -. ( P .x. C ) e. ( S .(+) W ) -> C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) ) ) |
| 36 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 37 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 38 |
9 37
|
syl |
|- ( ph -> G e. Grp ) |
| 39 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
| 40 |
38 39
|
syl |
|- ( ph -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
| 41 |
40
|
acsmred |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 42 |
3
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
| 43 |
12 42
|
syl |
|- ( ph -> U C_ B ) |
| 44 |
43 13
|
sseldd |
|- ( ph -> A e. B ) |
| 45 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 46 |
41 44 45
|
syl2anc |
|- ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 47 |
2 46
|
eqeltrid |
|- ( ph -> S e. ( SubGrp ` G ) ) |
| 48 |
7
|
lsmsubg2 |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 49 |
9 47 14 48
|
syl3anc |
|- ( ph -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 50 |
43 28
|
sseldd |
|- ( ph -> ( P .x. C ) e. B ) |
| 51 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ ( P .x. C ) e. B ) -> ( K ` { ( P .x. C ) } ) e. ( SubGrp ` G ) ) |
| 52 |
41 50 51
|
syl2anc |
|- ( ph -> ( K ` { ( P .x. C ) } ) e. ( SubGrp ` G ) ) |
| 53 |
36 7 49 52
|
lsmelvalm |
|- ( ph -> ( C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) <-> E. s e. ( S .(+) W ) E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) ) ) |
| 54 |
|
eqid |
|- ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) = ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) |
| 55 |
3 19 54 1
|
cycsubg2 |
|- ( ( G e. Grp /\ ( P .x. C ) e. B ) -> ( K ` { ( P .x. C ) } ) = ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) ) |
| 56 |
38 50 55
|
syl2anc |
|- ( ph -> ( K ` { ( P .x. C ) } ) = ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) ) |
| 57 |
56
|
rexeqdv |
|- ( ph -> ( E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) <-> E. t e. ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) C = ( s ( -g ` G ) t ) ) ) |
| 58 |
|
ovex |
|- ( k .x. ( P .x. C ) ) e. _V |
| 59 |
58
|
rgenw |
|- A. k e. ZZ ( k .x. ( P .x. C ) ) e. _V |
| 60 |
|
oveq2 |
|- ( t = ( k .x. ( P .x. C ) ) -> ( s ( -g ` G ) t ) = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) |
| 61 |
60
|
eqeq2d |
|- ( t = ( k .x. ( P .x. C ) ) -> ( C = ( s ( -g ` G ) t ) <-> C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
| 62 |
54 61
|
rexrnmptw |
|- ( A. k e. ZZ ( k .x. ( P .x. C ) ) e. _V -> ( E. t e. ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) C = ( s ( -g ` G ) t ) <-> E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
| 63 |
59 62
|
mp1i |
|- ( ph -> ( E. t e. ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) C = ( s ( -g ` G ) t ) <-> E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
| 64 |
57 63
|
bitrd |
|- ( ph -> ( E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) <-> E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
| 65 |
64
|
rexbidv |
|- ( ph -> ( E. s e. ( S .(+) W ) E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) <-> E. s e. ( S .(+) W ) E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
| 66 |
|
rexcom |
|- ( E. s e. ( S .(+) W ) E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. k e. ZZ E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) |
| 67 |
38
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> G e. Grp ) |
| 68 |
16 43
|
sstrd |
|- ( ph -> ( S .(+) W ) C_ B ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( S .(+) W ) C_ B ) |
| 70 |
69
|
sselda |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> s e. B ) |
| 71 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> k e. ZZ ) |
| 72 |
50
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( P .x. C ) e. B ) |
| 73 |
3 19
|
mulgcl |
|- ( ( G e. Grp /\ k e. ZZ /\ ( P .x. C ) e. B ) -> ( k .x. ( P .x. C ) ) e. B ) |
| 74 |
67 71 72 73
|
syl3anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( k .x. ( P .x. C ) ) e. B ) |
| 75 |
43 21
|
sseldd |
|- ( ph -> C e. B ) |
| 76 |
75
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> C e. B ) |
| 77 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 78 |
3 77 36
|
grpsubadd |
|- ( ( G e. Grp /\ ( s e. B /\ ( k .x. ( P .x. C ) ) e. B /\ C e. B ) ) -> ( ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C <-> ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) = s ) ) |
| 79 |
67 70 74 76 78
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C <-> ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) = s ) ) |
| 80 |
|
1zzd |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> 1 e. ZZ ) |
| 81 |
26
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> P e. ZZ ) |
| 82 |
71 81
|
zmulcld |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( k x. P ) e. ZZ ) |
| 83 |
3 19 77
|
mulgdir |
|- ( ( G e. Grp /\ ( 1 e. ZZ /\ ( k x. P ) e. ZZ /\ C e. B ) ) -> ( ( 1 + ( k x. P ) ) .x. C ) = ( ( 1 .x. C ) ( +g ` G ) ( ( k x. P ) .x. C ) ) ) |
| 84 |
67 80 82 76 83
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( 1 + ( k x. P ) ) .x. C ) = ( ( 1 .x. C ) ( +g ` G ) ( ( k x. P ) .x. C ) ) ) |
| 85 |
3 19
|
mulg1 |
|- ( C e. B -> ( 1 .x. C ) = C ) |
| 86 |
76 85
|
syl |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( 1 .x. C ) = C ) |
| 87 |
3 19
|
mulgass |
|- ( ( G e. Grp /\ ( k e. ZZ /\ P e. ZZ /\ C e. B ) ) -> ( ( k x. P ) .x. C ) = ( k .x. ( P .x. C ) ) ) |
| 88 |
67 71 81 76 87
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( k x. P ) .x. C ) = ( k .x. ( P .x. C ) ) ) |
| 89 |
86 88
|
oveq12d |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( 1 .x. C ) ( +g ` G ) ( ( k x. P ) .x. C ) ) = ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) ) |
| 90 |
84 89
|
eqtrd |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( 1 + ( k x. P ) ) .x. C ) = ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) ) |
| 91 |
90
|
eqeq1d |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) = s <-> ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) = s ) ) |
| 92 |
79 91
|
bitr4d |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C <-> ( ( 1 + ( k x. P ) ) .x. C ) = s ) ) |
| 93 |
|
eqcom |
|- ( C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C ) |
| 94 |
|
eqcom |
|- ( s = ( ( 1 + ( k x. P ) ) .x. C ) <-> ( ( 1 + ( k x. P ) ) .x. C ) = s ) |
| 95 |
92 93 94
|
3bitr4g |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> s = ( ( 1 + ( k x. P ) ) .x. C ) ) ) |
| 96 |
95
|
rexbidva |
|- ( ( ph /\ k e. ZZ ) -> ( E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. s e. ( S .(+) W ) s = ( ( 1 + ( k x. P ) ) .x. C ) ) ) |
| 97 |
|
risset |
|- ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) <-> E. s e. ( S .(+) W ) s = ( ( 1 + ( k x. P ) ) .x. C ) ) |
| 98 |
96 97
|
bitr4di |
|- ( ( ph /\ k e. ZZ ) -> ( E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
| 99 |
98
|
rexbidva |
|- ( ph -> ( E. k e. ZZ E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
| 100 |
66 99
|
bitrid |
|- ( ph -> ( E. s e. ( S .(+) W ) E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
| 101 |
53 65 100
|
3bitrd |
|- ( ph -> ( C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) <-> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
| 102 |
35 101
|
sylibd |
|- ( ph -> ( -. ( P .x. C ) e. ( S .(+) W ) -> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
| 103 |
38
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> G e. Grp ) |
| 104 |
75
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> C e. B ) |
| 105 |
|
1z |
|- 1 e. ZZ |
| 106 |
|
id |
|- ( k e. ZZ -> k e. ZZ ) |
| 107 |
|
zmulcl |
|- ( ( k e. ZZ /\ P e. ZZ ) -> ( k x. P ) e. ZZ ) |
| 108 |
106 26 107
|
syl2anr |
|- ( ( ph /\ k e. ZZ ) -> ( k x. P ) e. ZZ ) |
| 109 |
|
zaddcl |
|- ( ( 1 e. ZZ /\ ( k x. P ) e. ZZ ) -> ( 1 + ( k x. P ) ) e. ZZ ) |
| 110 |
105 108 109
|
sylancr |
|- ( ( ph /\ k e. ZZ ) -> ( 1 + ( k x. P ) ) e. ZZ ) |
| 111 |
3 4
|
odcl |
|- ( C e. B -> ( O ` C ) e. NN0 ) |
| 112 |
104 111
|
syl |
|- ( ( ph /\ k e. ZZ ) -> ( O ` C ) e. NN0 ) |
| 113 |
112
|
nn0zd |
|- ( ( ph /\ k e. ZZ ) -> ( O ` C ) e. ZZ ) |
| 114 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
| 115 |
10 114
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 116 |
115
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
| 117 |
116
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( # ` B ) e. ZZ ) |
| 118 |
110 117
|
gcdcomd |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + ( k x. P ) ) gcd ( # ` B ) ) = ( ( # ` B ) gcd ( 1 + ( k x. P ) ) ) ) |
| 119 |
3
|
pgphash |
|- ( ( P pGrp G /\ B e. Fin ) -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 120 |
8 10 119
|
syl2anc |
|- ( ph -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 122 |
121
|
oveq1d |
|- ( ( ph /\ k e. ZZ ) -> ( ( # ` B ) gcd ( 1 + ( k x. P ) ) ) = ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) ) |
| 123 |
|
simpr |
|- ( ( ph /\ k e. ZZ ) -> k e. ZZ ) |
| 124 |
26
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> P e. ZZ ) |
| 125 |
|
1zzd |
|- ( ( ph /\ k e. ZZ ) -> 1 e. ZZ ) |
| 126 |
|
gcdaddm |
|- ( ( k e. ZZ /\ P e. ZZ /\ 1 e. ZZ ) -> ( P gcd 1 ) = ( P gcd ( 1 + ( k x. P ) ) ) ) |
| 127 |
123 124 125 126
|
syl3anc |
|- ( ( ph /\ k e. ZZ ) -> ( P gcd 1 ) = ( P gcd ( 1 + ( k x. P ) ) ) ) |
| 128 |
|
gcd1 |
|- ( P e. ZZ -> ( P gcd 1 ) = 1 ) |
| 129 |
124 128
|
syl |
|- ( ( ph /\ k e. ZZ ) -> ( P gcd 1 ) = 1 ) |
| 130 |
127 129
|
eqtr3d |
|- ( ( ph /\ k e. ZZ ) -> ( P gcd ( 1 + ( k x. P ) ) ) = 1 ) |
| 131 |
3
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
| 132 |
38 131
|
syl |
|- ( ph -> B =/= (/) ) |
| 133 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 134 |
10 133
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 135 |
132 134
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
| 136 |
24 135
|
pccld |
|- ( ph -> ( P pCnt ( # ` B ) ) e. NN0 ) |
| 137 |
136
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( P pCnt ( # ` B ) ) e. NN0 ) |
| 138 |
|
rpexp1i |
|- ( ( P e. ZZ /\ ( 1 + ( k x. P ) ) e. ZZ /\ ( P pCnt ( # ` B ) ) e. NN0 ) -> ( ( P gcd ( 1 + ( k x. P ) ) ) = 1 -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) = 1 ) ) |
| 139 |
124 110 137 138
|
syl3anc |
|- ( ( ph /\ k e. ZZ ) -> ( ( P gcd ( 1 + ( k x. P ) ) ) = 1 -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) = 1 ) ) |
| 140 |
130 139
|
mpd |
|- ( ( ph /\ k e. ZZ ) -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) = 1 ) |
| 141 |
118 122 140
|
3eqtrd |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + ( k x. P ) ) gcd ( # ` B ) ) = 1 ) |
| 142 |
3 4
|
oddvds2 |
|- ( ( G e. Grp /\ B e. Fin /\ C e. B ) -> ( O ` C ) || ( # ` B ) ) |
| 143 |
38 10 75 142
|
syl3anc |
|- ( ph -> ( O ` C ) || ( # ` B ) ) |
| 144 |
143
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( O ` C ) || ( # ` B ) ) |
| 145 |
|
rpdvds |
|- ( ( ( ( 1 + ( k x. P ) ) e. ZZ /\ ( O ` C ) e. ZZ /\ ( # ` B ) e. ZZ ) /\ ( ( ( 1 + ( k x. P ) ) gcd ( # ` B ) ) = 1 /\ ( O ` C ) || ( # ` B ) ) ) -> ( ( 1 + ( k x. P ) ) gcd ( O ` C ) ) = 1 ) |
| 146 |
110 113 117 141 144 145
|
syl32anc |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + ( k x. P ) ) gcd ( O ` C ) ) = 1 ) |
| 147 |
3 4 19
|
odbezout |
|- ( ( ( G e. Grp /\ C e. B /\ ( 1 + ( k x. P ) ) e. ZZ ) /\ ( ( 1 + ( k x. P ) ) gcd ( O ` C ) ) = 1 ) -> E. a e. ZZ ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C ) |
| 148 |
103 104 110 146 147
|
syl31anc |
|- ( ( ph /\ k e. ZZ ) -> E. a e. ZZ ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C ) |
| 149 |
49
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 150 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> a e. ZZ ) |
| 151 |
19
|
subgmulgcl |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ a e. ZZ /\ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) |
| 152 |
151
|
3expia |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ a e. ZZ ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) ) |
| 153 |
149 150 152
|
syl2anc |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) ) |
| 154 |
|
eleq1 |
|- ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) <-> C e. ( S .(+) W ) ) ) |
| 155 |
154
|
imbi2d |
|- ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) <-> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) ) |
| 156 |
153 155
|
syl5ibcom |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) ) |
| 157 |
156
|
rexlimdva |
|- ( ( ph /\ k e. ZZ ) -> ( E. a e. ZZ ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) ) |
| 158 |
148 157
|
mpd |
|- ( ( ph /\ k e. ZZ ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) |
| 159 |
158
|
rexlimdva |
|- ( ph -> ( E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) |
| 160 |
102 159
|
syld |
|- ( ph -> ( -. ( P .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) |
| 161 |
20 160
|
mt3d |
|- ( ph -> ( P .x. C ) e. ( S .(+) W ) ) |