Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
12 |
|
pgpfac1.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
13 |
|
pgpfac1.au |
|- ( ph -> A e. U ) |
14 |
|
pgpfac1.w |
|- ( ph -> W e. ( SubGrp ` G ) ) |
15 |
|
pgpfac1.i |
|- ( ph -> ( S i^i W ) = { .0. } ) |
16 |
|
pgpfac1.ss |
|- ( ph -> ( S .(+) W ) C_ U ) |
17 |
|
pgpfac1.2 |
|- ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
18 |
|
pgpfac1.c |
|- ( ph -> C e. ( U \ ( S .(+) W ) ) ) |
19 |
|
pgpfac1.mg |
|- .x. = ( .g ` G ) |
20 |
18
|
eldifbd |
|- ( ph -> -. C e. ( S .(+) W ) ) |
21 |
18
|
eldifad |
|- ( ph -> C e. U ) |
22 |
21
|
adantr |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> C e. U ) |
23 |
|
pgpprm |
|- ( P pGrp G -> P e. Prime ) |
24 |
8 23
|
syl |
|- ( ph -> P e. Prime ) |
25 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
26 |
24 25
|
syl |
|- ( ph -> P e. ZZ ) |
27 |
19
|
subgmulgcl |
|- ( ( U e. ( SubGrp ` G ) /\ P e. ZZ /\ C e. U ) -> ( P .x. C ) e. U ) |
28 |
12 26 21 27
|
syl3anc |
|- ( ph -> ( P .x. C ) e. U ) |
29 |
28
|
adantr |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> ( P .x. C ) e. U ) |
30 |
|
simpr |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> -. ( P .x. C ) e. ( S .(+) W ) ) |
31 |
29 30
|
eldifd |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> ( P .x. C ) e. ( U \ ( S .(+) W ) ) ) |
32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pgpfac1lem1 |
|- ( ( ph /\ ( P .x. C ) e. ( U \ ( S .(+) W ) ) ) -> ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) = U ) |
33 |
31 32
|
syldan |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) = U ) |
34 |
22 33
|
eleqtrrd |
|- ( ( ph /\ -. ( P .x. C ) e. ( S .(+) W ) ) -> C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) ) |
35 |
34
|
ex |
|- ( ph -> ( -. ( P .x. C ) e. ( S .(+) W ) -> C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) ) ) |
36 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
37 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
38 |
9 37
|
syl |
|- ( ph -> G e. Grp ) |
39 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
40 |
38 39
|
syl |
|- ( ph -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
41 |
40
|
acsmred |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
42 |
3
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
43 |
12 42
|
syl |
|- ( ph -> U C_ B ) |
44 |
43 13
|
sseldd |
|- ( ph -> A e. B ) |
45 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
46 |
41 44 45
|
syl2anc |
|- ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
47 |
2 46
|
eqeltrid |
|- ( ph -> S e. ( SubGrp ` G ) ) |
48 |
7
|
lsmsubg2 |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
49 |
9 47 14 48
|
syl3anc |
|- ( ph -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
50 |
43 28
|
sseldd |
|- ( ph -> ( P .x. C ) e. B ) |
51 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ ( P .x. C ) e. B ) -> ( K ` { ( P .x. C ) } ) e. ( SubGrp ` G ) ) |
52 |
41 50 51
|
syl2anc |
|- ( ph -> ( K ` { ( P .x. C ) } ) e. ( SubGrp ` G ) ) |
53 |
36 7 49 52
|
lsmelvalm |
|- ( ph -> ( C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) <-> E. s e. ( S .(+) W ) E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) ) ) |
54 |
|
eqid |
|- ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) = ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) |
55 |
3 19 54 1
|
cycsubg2 |
|- ( ( G e. Grp /\ ( P .x. C ) e. B ) -> ( K ` { ( P .x. C ) } ) = ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) ) |
56 |
38 50 55
|
syl2anc |
|- ( ph -> ( K ` { ( P .x. C ) } ) = ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) ) |
57 |
56
|
rexeqdv |
|- ( ph -> ( E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) <-> E. t e. ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) C = ( s ( -g ` G ) t ) ) ) |
58 |
|
ovex |
|- ( k .x. ( P .x. C ) ) e. _V |
59 |
58
|
rgenw |
|- A. k e. ZZ ( k .x. ( P .x. C ) ) e. _V |
60 |
|
oveq2 |
|- ( t = ( k .x. ( P .x. C ) ) -> ( s ( -g ` G ) t ) = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) |
61 |
60
|
eqeq2d |
|- ( t = ( k .x. ( P .x. C ) ) -> ( C = ( s ( -g ` G ) t ) <-> C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
62 |
54 61
|
rexrnmptw |
|- ( A. k e. ZZ ( k .x. ( P .x. C ) ) e. _V -> ( E. t e. ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) C = ( s ( -g ` G ) t ) <-> E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
63 |
59 62
|
mp1i |
|- ( ph -> ( E. t e. ran ( k e. ZZ |-> ( k .x. ( P .x. C ) ) ) C = ( s ( -g ` G ) t ) <-> E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
64 |
57 63
|
bitrd |
|- ( ph -> ( E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) <-> E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
65 |
64
|
rexbidv |
|- ( ph -> ( E. s e. ( S .(+) W ) E. t e. ( K ` { ( P .x. C ) } ) C = ( s ( -g ` G ) t ) <-> E. s e. ( S .(+) W ) E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) ) |
66 |
|
rexcom |
|- ( E. s e. ( S .(+) W ) E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. k e. ZZ E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) ) |
67 |
38
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> G e. Grp ) |
68 |
16 43
|
sstrd |
|- ( ph -> ( S .(+) W ) C_ B ) |
69 |
68
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( S .(+) W ) C_ B ) |
70 |
69
|
sselda |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> s e. B ) |
71 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> k e. ZZ ) |
72 |
50
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( P .x. C ) e. B ) |
73 |
3 19
|
mulgcl |
|- ( ( G e. Grp /\ k e. ZZ /\ ( P .x. C ) e. B ) -> ( k .x. ( P .x. C ) ) e. B ) |
74 |
67 71 72 73
|
syl3anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( k .x. ( P .x. C ) ) e. B ) |
75 |
43 21
|
sseldd |
|- ( ph -> C e. B ) |
76 |
75
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> C e. B ) |
77 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
78 |
3 77 36
|
grpsubadd |
|- ( ( G e. Grp /\ ( s e. B /\ ( k .x. ( P .x. C ) ) e. B /\ C e. B ) ) -> ( ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C <-> ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) = s ) ) |
79 |
67 70 74 76 78
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C <-> ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) = s ) ) |
80 |
|
1zzd |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> 1 e. ZZ ) |
81 |
26
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> P e. ZZ ) |
82 |
71 81
|
zmulcld |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( k x. P ) e. ZZ ) |
83 |
3 19 77
|
mulgdir |
|- ( ( G e. Grp /\ ( 1 e. ZZ /\ ( k x. P ) e. ZZ /\ C e. B ) ) -> ( ( 1 + ( k x. P ) ) .x. C ) = ( ( 1 .x. C ) ( +g ` G ) ( ( k x. P ) .x. C ) ) ) |
84 |
67 80 82 76 83
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( 1 + ( k x. P ) ) .x. C ) = ( ( 1 .x. C ) ( +g ` G ) ( ( k x. P ) .x. C ) ) ) |
85 |
3 19
|
mulg1 |
|- ( C e. B -> ( 1 .x. C ) = C ) |
86 |
76 85
|
syl |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( 1 .x. C ) = C ) |
87 |
3 19
|
mulgass |
|- ( ( G e. Grp /\ ( k e. ZZ /\ P e. ZZ /\ C e. B ) ) -> ( ( k x. P ) .x. C ) = ( k .x. ( P .x. C ) ) ) |
88 |
67 71 81 76 87
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( k x. P ) .x. C ) = ( k .x. ( P .x. C ) ) ) |
89 |
86 88
|
oveq12d |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( 1 .x. C ) ( +g ` G ) ( ( k x. P ) .x. C ) ) = ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) ) |
90 |
84 89
|
eqtrd |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( 1 + ( k x. P ) ) .x. C ) = ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) ) |
91 |
90
|
eqeq1d |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) = s <-> ( C ( +g ` G ) ( k .x. ( P .x. C ) ) ) = s ) ) |
92 |
79 91
|
bitr4d |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C <-> ( ( 1 + ( k x. P ) ) .x. C ) = s ) ) |
93 |
|
eqcom |
|- ( C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) = C ) |
94 |
|
eqcom |
|- ( s = ( ( 1 + ( k x. P ) ) .x. C ) <-> ( ( 1 + ( k x. P ) ) .x. C ) = s ) |
95 |
92 93 94
|
3bitr4g |
|- ( ( ( ph /\ k e. ZZ ) /\ s e. ( S .(+) W ) ) -> ( C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> s = ( ( 1 + ( k x. P ) ) .x. C ) ) ) |
96 |
95
|
rexbidva |
|- ( ( ph /\ k e. ZZ ) -> ( E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. s e. ( S .(+) W ) s = ( ( 1 + ( k x. P ) ) .x. C ) ) ) |
97 |
|
risset |
|- ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) <-> E. s e. ( S .(+) W ) s = ( ( 1 + ( k x. P ) ) .x. C ) ) |
98 |
96 97
|
bitr4di |
|- ( ( ph /\ k e. ZZ ) -> ( E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
99 |
98
|
rexbidva |
|- ( ph -> ( E. k e. ZZ E. s e. ( S .(+) W ) C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
100 |
66 99
|
syl5bb |
|- ( ph -> ( E. s e. ( S .(+) W ) E. k e. ZZ C = ( s ( -g ` G ) ( k .x. ( P .x. C ) ) ) <-> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
101 |
53 65 100
|
3bitrd |
|- ( ph -> ( C e. ( ( S .(+) W ) .(+) ( K ` { ( P .x. C ) } ) ) <-> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
102 |
35 101
|
sylibd |
|- ( ph -> ( -. ( P .x. C ) e. ( S .(+) W ) -> E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) ) |
103 |
38
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> G e. Grp ) |
104 |
75
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> C e. B ) |
105 |
|
1z |
|- 1 e. ZZ |
106 |
|
id |
|- ( k e. ZZ -> k e. ZZ ) |
107 |
|
zmulcl |
|- ( ( k e. ZZ /\ P e. ZZ ) -> ( k x. P ) e. ZZ ) |
108 |
106 26 107
|
syl2anr |
|- ( ( ph /\ k e. ZZ ) -> ( k x. P ) e. ZZ ) |
109 |
|
zaddcl |
|- ( ( 1 e. ZZ /\ ( k x. P ) e. ZZ ) -> ( 1 + ( k x. P ) ) e. ZZ ) |
110 |
105 108 109
|
sylancr |
|- ( ( ph /\ k e. ZZ ) -> ( 1 + ( k x. P ) ) e. ZZ ) |
111 |
3 4
|
odcl |
|- ( C e. B -> ( O ` C ) e. NN0 ) |
112 |
104 111
|
syl |
|- ( ( ph /\ k e. ZZ ) -> ( O ` C ) e. NN0 ) |
113 |
112
|
nn0zd |
|- ( ( ph /\ k e. ZZ ) -> ( O ` C ) e. ZZ ) |
114 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
115 |
10 114
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
116 |
115
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
117 |
116
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( # ` B ) e. ZZ ) |
118 |
110 117
|
gcdcomd |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + ( k x. P ) ) gcd ( # ` B ) ) = ( ( # ` B ) gcd ( 1 + ( k x. P ) ) ) ) |
119 |
3
|
pgphash |
|- ( ( P pGrp G /\ B e. Fin ) -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
120 |
8 10 119
|
syl2anc |
|- ( ph -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
121 |
120
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
122 |
121
|
oveq1d |
|- ( ( ph /\ k e. ZZ ) -> ( ( # ` B ) gcd ( 1 + ( k x. P ) ) ) = ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) ) |
123 |
|
simpr |
|- ( ( ph /\ k e. ZZ ) -> k e. ZZ ) |
124 |
26
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> P e. ZZ ) |
125 |
|
1zzd |
|- ( ( ph /\ k e. ZZ ) -> 1 e. ZZ ) |
126 |
|
gcdaddm |
|- ( ( k e. ZZ /\ P e. ZZ /\ 1 e. ZZ ) -> ( P gcd 1 ) = ( P gcd ( 1 + ( k x. P ) ) ) ) |
127 |
123 124 125 126
|
syl3anc |
|- ( ( ph /\ k e. ZZ ) -> ( P gcd 1 ) = ( P gcd ( 1 + ( k x. P ) ) ) ) |
128 |
|
gcd1 |
|- ( P e. ZZ -> ( P gcd 1 ) = 1 ) |
129 |
124 128
|
syl |
|- ( ( ph /\ k e. ZZ ) -> ( P gcd 1 ) = 1 ) |
130 |
127 129
|
eqtr3d |
|- ( ( ph /\ k e. ZZ ) -> ( P gcd ( 1 + ( k x. P ) ) ) = 1 ) |
131 |
3
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
132 |
38 131
|
syl |
|- ( ph -> B =/= (/) ) |
133 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
134 |
10 133
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
135 |
132 134
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
136 |
24 135
|
pccld |
|- ( ph -> ( P pCnt ( # ` B ) ) e. NN0 ) |
137 |
136
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( P pCnt ( # ` B ) ) e. NN0 ) |
138 |
|
rpexp1i |
|- ( ( P e. ZZ /\ ( 1 + ( k x. P ) ) e. ZZ /\ ( P pCnt ( # ` B ) ) e. NN0 ) -> ( ( P gcd ( 1 + ( k x. P ) ) ) = 1 -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) = 1 ) ) |
139 |
124 110 137 138
|
syl3anc |
|- ( ( ph /\ k e. ZZ ) -> ( ( P gcd ( 1 + ( k x. P ) ) ) = 1 -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) = 1 ) ) |
140 |
130 139
|
mpd |
|- ( ( ph /\ k e. ZZ ) -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( 1 + ( k x. P ) ) ) = 1 ) |
141 |
118 122 140
|
3eqtrd |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + ( k x. P ) ) gcd ( # ` B ) ) = 1 ) |
142 |
3 4
|
oddvds2 |
|- ( ( G e. Grp /\ B e. Fin /\ C e. B ) -> ( O ` C ) || ( # ` B ) ) |
143 |
38 10 75 142
|
syl3anc |
|- ( ph -> ( O ` C ) || ( # ` B ) ) |
144 |
143
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( O ` C ) || ( # ` B ) ) |
145 |
|
rpdvds |
|- ( ( ( ( 1 + ( k x. P ) ) e. ZZ /\ ( O ` C ) e. ZZ /\ ( # ` B ) e. ZZ ) /\ ( ( ( 1 + ( k x. P ) ) gcd ( # ` B ) ) = 1 /\ ( O ` C ) || ( # ` B ) ) ) -> ( ( 1 + ( k x. P ) ) gcd ( O ` C ) ) = 1 ) |
146 |
110 113 117 141 144 145
|
syl32anc |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + ( k x. P ) ) gcd ( O ` C ) ) = 1 ) |
147 |
3 4 19
|
odbezout |
|- ( ( ( G e. Grp /\ C e. B /\ ( 1 + ( k x. P ) ) e. ZZ ) /\ ( ( 1 + ( k x. P ) ) gcd ( O ` C ) ) = 1 ) -> E. a e. ZZ ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C ) |
148 |
103 104 110 146 147
|
syl31anc |
|- ( ( ph /\ k e. ZZ ) -> E. a e. ZZ ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C ) |
149 |
49
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
150 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> a e. ZZ ) |
151 |
19
|
subgmulgcl |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ a e. ZZ /\ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) |
152 |
151
|
3expia |
|- ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ a e. ZZ ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) ) |
153 |
149 150 152
|
syl2anc |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) ) |
154 |
|
eleq1 |
|- ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) <-> C e. ( S .(+) W ) ) ) |
155 |
154
|
imbi2d |
|- ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) e. ( S .(+) W ) ) <-> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) ) |
156 |
153 155
|
syl5ibcom |
|- ( ( ( ph /\ k e. ZZ ) /\ a e. ZZ ) -> ( ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) ) |
157 |
156
|
rexlimdva |
|- ( ( ph /\ k e. ZZ ) -> ( E. a e. ZZ ( a .x. ( ( 1 + ( k x. P ) ) .x. C ) ) = C -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) ) |
158 |
148 157
|
mpd |
|- ( ( ph /\ k e. ZZ ) -> ( ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) |
159 |
158
|
rexlimdva |
|- ( ph -> ( E. k e. ZZ ( ( 1 + ( k x. P ) ) .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) |
160 |
102 159
|
syld |
|- ( ph -> ( -. ( P .x. C ) e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) |
161 |
20 160
|
mt3d |
|- ( ph -> ( P .x. C ) e. ( S .(+) W ) ) |