| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfac1.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 2 |  | pgpfac1.s |  |-  S = ( K ` { A } ) | 
						
							| 3 |  | pgpfac1.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | pgpfac1.o |  |-  O = ( od ` G ) | 
						
							| 5 |  | pgpfac1.e |  |-  E = ( gEx ` G ) | 
						
							| 6 |  | pgpfac1.z |  |-  .0. = ( 0g ` G ) | 
						
							| 7 |  | pgpfac1.l |  |-  .(+) = ( LSSum ` G ) | 
						
							| 8 |  | pgpfac1.p |  |-  ( ph -> P pGrp G ) | 
						
							| 9 |  | pgpfac1.g |  |-  ( ph -> G e. Abel ) | 
						
							| 10 |  | pgpfac1.n |  |-  ( ph -> B e. Fin ) | 
						
							| 11 |  | pgpfac1.oe |  |-  ( ph -> ( O ` A ) = E ) | 
						
							| 12 |  | pgpfac1.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 13 |  | pgpfac1.au |  |-  ( ph -> A e. U ) | 
						
							| 14 |  | pgpfac1.w |  |-  ( ph -> W e. ( SubGrp ` G ) ) | 
						
							| 15 |  | pgpfac1.i |  |-  ( ph -> ( S i^i W ) = { .0. } ) | 
						
							| 16 |  | pgpfac1.ss |  |-  ( ph -> ( S .(+) W ) C_ U ) | 
						
							| 17 |  | pgpfac1.2 |  |-  ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) | 
						
							| 18 |  | pgpfac1.c |  |-  ( ph -> C e. ( U \ ( S .(+) W ) ) ) | 
						
							| 19 |  | pgpfac1.mg |  |-  .x. = ( .g ` G ) | 
						
							| 20 |  | pgpfac1.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 21 |  | pgpfac1.mw |  |-  ( ph -> ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) e. W ) | 
						
							| 22 | 18 | eldifbd |  |-  ( ph -> -. C e. ( S .(+) W ) ) | 
						
							| 23 |  | pgpprm |  |-  ( P pGrp G -> P e. Prime ) | 
						
							| 24 | 8 23 | syl |  |-  ( ph -> P e. Prime ) | 
						
							| 25 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 26 | 9 25 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 27 | 3 5 | gexcl2 |  |-  ( ( G e. Grp /\ B e. Fin ) -> E e. NN ) | 
						
							| 28 | 26 10 27 | syl2anc |  |-  ( ph -> E e. NN ) | 
						
							| 29 |  | pceq0 |  |-  ( ( P e. Prime /\ E e. NN ) -> ( ( P pCnt E ) = 0 <-> -. P || E ) ) | 
						
							| 30 | 24 28 29 | syl2anc |  |-  ( ph -> ( ( P pCnt E ) = 0 <-> -. P || E ) ) | 
						
							| 31 |  | oveq2 |  |-  ( ( P pCnt E ) = 0 -> ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) ) | 
						
							| 32 | 30 31 | biimtrrdi |  |-  ( ph -> ( -. P || E -> ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) ) ) | 
						
							| 33 | 3 | grpbn0 |  |-  ( G e. Grp -> B =/= (/) ) | 
						
							| 34 | 26 33 | syl |  |-  ( ph -> B =/= (/) ) | 
						
							| 35 |  | hashnncl |  |-  ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) | 
						
							| 36 | 10 35 | syl |  |-  ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) | 
						
							| 37 | 34 36 | mpbird |  |-  ( ph -> ( # ` B ) e. NN ) | 
						
							| 38 | 24 37 | pccld |  |-  ( ph -> ( P pCnt ( # ` B ) ) e. NN0 ) | 
						
							| 39 | 3 5 | gexdvds3 |  |-  ( ( G e. Grp /\ B e. Fin ) -> E || ( # ` B ) ) | 
						
							| 40 | 26 10 39 | syl2anc |  |-  ( ph -> E || ( # ` B ) ) | 
						
							| 41 | 3 | pgphash |  |-  ( ( P pGrp G /\ B e. Fin ) -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) | 
						
							| 42 | 8 10 41 | syl2anc |  |-  ( ph -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) | 
						
							| 43 | 40 42 | breqtrd |  |-  ( ph -> E || ( P ^ ( P pCnt ( # ` B ) ) ) ) | 
						
							| 44 |  | oveq2 |  |-  ( k = ( P pCnt ( # ` B ) ) -> ( P ^ k ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) | 
						
							| 45 | 44 | breq2d |  |-  ( k = ( P pCnt ( # ` B ) ) -> ( E || ( P ^ k ) <-> E || ( P ^ ( P pCnt ( # ` B ) ) ) ) ) | 
						
							| 46 | 45 | rspcev |  |-  ( ( ( P pCnt ( # ` B ) ) e. NN0 /\ E || ( P ^ ( P pCnt ( # ` B ) ) ) ) -> E. k e. NN0 E || ( P ^ k ) ) | 
						
							| 47 | 38 43 46 | syl2anc |  |-  ( ph -> E. k e. NN0 E || ( P ^ k ) ) | 
						
							| 48 |  | pcprmpw2 |  |-  ( ( P e. Prime /\ E e. NN ) -> ( E. k e. NN0 E || ( P ^ k ) <-> E = ( P ^ ( P pCnt E ) ) ) ) | 
						
							| 49 | 24 28 48 | syl2anc |  |-  ( ph -> ( E. k e. NN0 E || ( P ^ k ) <-> E = ( P ^ ( P pCnt E ) ) ) ) | 
						
							| 50 | 47 49 | mpbid |  |-  ( ph -> E = ( P ^ ( P pCnt E ) ) ) | 
						
							| 51 | 50 | eqcomd |  |-  ( ph -> ( P ^ ( P pCnt E ) ) = E ) | 
						
							| 52 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 53 | 24 52 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 54 | 53 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 55 | 54 | exp0d |  |-  ( ph -> ( P ^ 0 ) = 1 ) | 
						
							| 56 | 51 55 | eqeq12d |  |-  ( ph -> ( ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) <-> E = 1 ) ) | 
						
							| 57 | 26 | grpmndd |  |-  ( ph -> G e. Mnd ) | 
						
							| 58 | 3 5 | gex1 |  |-  ( G e. Mnd -> ( E = 1 <-> B ~~ 1o ) ) | 
						
							| 59 | 57 58 | syl |  |-  ( ph -> ( E = 1 <-> B ~~ 1o ) ) | 
						
							| 60 | 56 59 | bitrd |  |-  ( ph -> ( ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) <-> B ~~ 1o ) ) | 
						
							| 61 | 32 60 | sylibd |  |-  ( ph -> ( -. P || E -> B ~~ 1o ) ) | 
						
							| 62 | 3 | subgacs |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) | 
						
							| 63 | 26 62 | syl |  |-  ( ph -> ( SubGrp ` G ) e. ( ACS ` B ) ) | 
						
							| 64 | 63 | acsmred |  |-  ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) | 
						
							| 65 | 3 | subgss |  |-  ( U e. ( SubGrp ` G ) -> U C_ B ) | 
						
							| 66 | 12 65 | syl |  |-  ( ph -> U C_ B ) | 
						
							| 67 | 66 13 | sseldd |  |-  ( ph -> A e. B ) | 
						
							| 68 | 1 | mrcsncl |  |-  ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 69 | 64 67 68 | syl2anc |  |-  ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 70 | 2 69 | eqeltrid |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 71 | 7 | lsmsubg2 |  |-  ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) | 
						
							| 72 | 9 70 14 71 | syl3anc |  |-  ( ph -> ( S .(+) W ) e. ( SubGrp ` G ) ) | 
						
							| 73 | 6 | subg0cl |  |-  ( ( S .(+) W ) e. ( SubGrp ` G ) -> .0. e. ( S .(+) W ) ) | 
						
							| 74 | 72 73 | syl |  |-  ( ph -> .0. e. ( S .(+) W ) ) | 
						
							| 75 | 74 | snssd |  |-  ( ph -> { .0. } C_ ( S .(+) W ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ B ~~ 1o ) -> { .0. } C_ ( S .(+) W ) ) | 
						
							| 77 | 18 | eldifad |  |-  ( ph -> C e. U ) | 
						
							| 78 | 66 77 | sseldd |  |-  ( ph -> C e. B ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ B ~~ 1o ) -> C e. B ) | 
						
							| 80 | 3 6 | grpidcl |  |-  ( G e. Grp -> .0. e. B ) | 
						
							| 81 | 26 80 | syl |  |-  ( ph -> .0. e. B ) | 
						
							| 82 |  | en1eqsn |  |-  ( ( .0. e. B /\ B ~~ 1o ) -> B = { .0. } ) | 
						
							| 83 | 81 82 | sylan |  |-  ( ( ph /\ B ~~ 1o ) -> B = { .0. } ) | 
						
							| 84 | 79 83 | eleqtrd |  |-  ( ( ph /\ B ~~ 1o ) -> C e. { .0. } ) | 
						
							| 85 | 76 84 | sseldd |  |-  ( ( ph /\ B ~~ 1o ) -> C e. ( S .(+) W ) ) | 
						
							| 86 | 85 | ex |  |-  ( ph -> ( B ~~ 1o -> C e. ( S .(+) W ) ) ) | 
						
							| 87 | 61 86 | syld |  |-  ( ph -> ( -. P || E -> C e. ( S .(+) W ) ) ) | 
						
							| 88 | 22 87 | mt3d |  |-  ( ph -> P || E ) | 
						
							| 89 | 28 | nncnd |  |-  ( ph -> E e. CC ) | 
						
							| 90 | 53 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 91 | 89 54 90 | divcan1d |  |-  ( ph -> ( ( E / P ) x. P ) = E ) | 
						
							| 92 | 11 91 | eqtr4d |  |-  ( ph -> ( O ` A ) = ( ( E / P ) x. P ) ) | 
						
							| 93 |  | nndivdvds |  |-  ( ( E e. NN /\ P e. NN ) -> ( P || E <-> ( E / P ) e. NN ) ) | 
						
							| 94 | 28 53 93 | syl2anc |  |-  ( ph -> ( P || E <-> ( E / P ) e. NN ) ) | 
						
							| 95 | 88 94 | mpbid |  |-  ( ph -> ( E / P ) e. NN ) | 
						
							| 96 | 95 | nnzd |  |-  ( ph -> ( E / P ) e. ZZ ) | 
						
							| 97 | 96 20 | zmulcld |  |-  ( ph -> ( ( E / P ) x. M ) e. ZZ ) | 
						
							| 98 | 67 | snssd |  |-  ( ph -> { A } C_ B ) | 
						
							| 99 | 64 1 98 | mrcssidd |  |-  ( ph -> { A } C_ ( K ` { A } ) ) | 
						
							| 100 | 99 2 | sseqtrrdi |  |-  ( ph -> { A } C_ S ) | 
						
							| 101 |  | snssg |  |-  ( A e. U -> ( A e. S <-> { A } C_ S ) ) | 
						
							| 102 | 13 101 | syl |  |-  ( ph -> ( A e. S <-> { A } C_ S ) ) | 
						
							| 103 | 100 102 | mpbird |  |-  ( ph -> A e. S ) | 
						
							| 104 | 19 | subgmulgcl |  |-  ( ( S e. ( SubGrp ` G ) /\ ( ( E / P ) x. M ) e. ZZ /\ A e. S ) -> ( ( ( E / P ) x. M ) .x. A ) e. S ) | 
						
							| 105 | 70 97 103 104 | syl3anc |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. S ) | 
						
							| 106 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 107 | 24 106 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 108 | 3 19 | mulgcl |  |-  ( ( G e. Grp /\ P e. ZZ /\ C e. B ) -> ( P .x. C ) e. B ) | 
						
							| 109 | 26 107 78 108 | syl3anc |  |-  ( ph -> ( P .x. C ) e. B ) | 
						
							| 110 | 3 19 | mulgcl |  |-  ( ( G e. Grp /\ M e. ZZ /\ A e. B ) -> ( M .x. A ) e. B ) | 
						
							| 111 | 26 20 67 110 | syl3anc |  |-  ( ph -> ( M .x. A ) e. B ) | 
						
							| 112 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 113 | 3 19 112 | mulgdi |  |-  ( ( G e. Abel /\ ( ( E / P ) e. ZZ /\ ( P .x. C ) e. B /\ ( M .x. A ) e. B ) ) -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) = ( ( ( E / P ) .x. ( P .x. C ) ) ( +g ` G ) ( ( E / P ) .x. ( M .x. A ) ) ) ) | 
						
							| 114 | 9 96 109 111 113 | syl13anc |  |-  ( ph -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) = ( ( ( E / P ) .x. ( P .x. C ) ) ( +g ` G ) ( ( E / P ) .x. ( M .x. A ) ) ) ) | 
						
							| 115 | 91 | oveq1d |  |-  ( ph -> ( ( ( E / P ) x. P ) .x. C ) = ( E .x. C ) ) | 
						
							| 116 | 3 19 | mulgass |  |-  ( ( G e. Grp /\ ( ( E / P ) e. ZZ /\ P e. ZZ /\ C e. B ) ) -> ( ( ( E / P ) x. P ) .x. C ) = ( ( E / P ) .x. ( P .x. C ) ) ) | 
						
							| 117 | 26 96 107 78 116 | syl13anc |  |-  ( ph -> ( ( ( E / P ) x. P ) .x. C ) = ( ( E / P ) .x. ( P .x. C ) ) ) | 
						
							| 118 | 3 5 19 6 | gexid |  |-  ( C e. B -> ( E .x. C ) = .0. ) | 
						
							| 119 | 78 118 | syl |  |-  ( ph -> ( E .x. C ) = .0. ) | 
						
							| 120 | 115 117 119 | 3eqtr3rd |  |-  ( ph -> .0. = ( ( E / P ) .x. ( P .x. C ) ) ) | 
						
							| 121 | 3 19 | mulgass |  |-  ( ( G e. Grp /\ ( ( E / P ) e. ZZ /\ M e. ZZ /\ A e. B ) ) -> ( ( ( E / P ) x. M ) .x. A ) = ( ( E / P ) .x. ( M .x. A ) ) ) | 
						
							| 122 | 26 96 20 67 121 | syl13anc |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) = ( ( E / P ) .x. ( M .x. A ) ) ) | 
						
							| 123 | 120 122 | oveq12d |  |-  ( ph -> ( .0. ( +g ` G ) ( ( ( E / P ) x. M ) .x. A ) ) = ( ( ( E / P ) .x. ( P .x. C ) ) ( +g ` G ) ( ( E / P ) .x. ( M .x. A ) ) ) ) | 
						
							| 124 | 3 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ B ) | 
						
							| 125 | 70 124 | syl |  |-  ( ph -> S C_ B ) | 
						
							| 126 | 125 105 | sseldd |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. B ) | 
						
							| 127 | 3 112 6 | grplid |  |-  ( ( G e. Grp /\ ( ( ( E / P ) x. M ) .x. A ) e. B ) -> ( .0. ( +g ` G ) ( ( ( E / P ) x. M ) .x. A ) ) = ( ( ( E / P ) x. M ) .x. A ) ) | 
						
							| 128 | 26 126 127 | syl2anc |  |-  ( ph -> ( .0. ( +g ` G ) ( ( ( E / P ) x. M ) .x. A ) ) = ( ( ( E / P ) x. M ) .x. A ) ) | 
						
							| 129 | 114 123 128 | 3eqtr2d |  |-  ( ph -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) = ( ( ( E / P ) x. M ) .x. A ) ) | 
						
							| 130 | 19 | subgmulgcl |  |-  ( ( W e. ( SubGrp ` G ) /\ ( E / P ) e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) e. W ) -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) e. W ) | 
						
							| 131 | 14 96 21 130 | syl3anc |  |-  ( ph -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) e. W ) | 
						
							| 132 | 129 131 | eqeltrrd |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. W ) | 
						
							| 133 | 105 132 | elind |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. ( S i^i W ) ) | 
						
							| 134 | 133 15 | eleqtrd |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. { .0. } ) | 
						
							| 135 |  | elsni |  |-  ( ( ( ( E / P ) x. M ) .x. A ) e. { .0. } -> ( ( ( E / P ) x. M ) .x. A ) = .0. ) | 
						
							| 136 | 134 135 | syl |  |-  ( ph -> ( ( ( E / P ) x. M ) .x. A ) = .0. ) | 
						
							| 137 | 3 4 19 6 | oddvds |  |-  ( ( G e. Grp /\ A e. B /\ ( ( E / P ) x. M ) e. ZZ ) -> ( ( O ` A ) || ( ( E / P ) x. M ) <-> ( ( ( E / P ) x. M ) .x. A ) = .0. ) ) | 
						
							| 138 | 26 67 97 137 | syl3anc |  |-  ( ph -> ( ( O ` A ) || ( ( E / P ) x. M ) <-> ( ( ( E / P ) x. M ) .x. A ) = .0. ) ) | 
						
							| 139 | 136 138 | mpbird |  |-  ( ph -> ( O ` A ) || ( ( E / P ) x. M ) ) | 
						
							| 140 | 92 139 | eqbrtrrd |  |-  ( ph -> ( ( E / P ) x. P ) || ( ( E / P ) x. M ) ) | 
						
							| 141 | 95 | nnne0d |  |-  ( ph -> ( E / P ) =/= 0 ) | 
						
							| 142 |  | dvdscmulr |  |-  ( ( P e. ZZ /\ M e. ZZ /\ ( ( E / P ) e. ZZ /\ ( E / P ) =/= 0 ) ) -> ( ( ( E / P ) x. P ) || ( ( E / P ) x. M ) <-> P || M ) ) | 
						
							| 143 | 107 20 96 141 142 | syl112anc |  |-  ( ph -> ( ( ( E / P ) x. P ) || ( ( E / P ) x. M ) <-> P || M ) ) | 
						
							| 144 | 140 143 | mpbid |  |-  ( ph -> P || M ) | 
						
							| 145 | 88 144 | jca |  |-  ( ph -> ( P || E /\ P || M ) ) |