| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfac1.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 2 |  | pgpfac1.s | ⊢ 𝑆  =  ( 𝐾 ‘ { 𝐴 } ) | 
						
							| 3 |  | pgpfac1.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | pgpfac1.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 5 |  | pgpfac1.e | ⊢ 𝐸  =  ( gEx ‘ 𝐺 ) | 
						
							| 6 |  | pgpfac1.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | pgpfac1.l | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 8 |  | pgpfac1.p | ⊢ ( 𝜑  →  𝑃  pGrp  𝐺 ) | 
						
							| 9 |  | pgpfac1.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 10 |  | pgpfac1.n | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 11 |  | pgpfac1.oe | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  =  𝐸 ) | 
						
							| 12 |  | pgpfac1.u | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 13 |  | pgpfac1.au | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 14 |  | pgpfac1.w | ⊢ ( 𝜑  →  𝑊  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 15 |  | pgpfac1.i | ⊢ ( 𝜑  →  ( 𝑆  ∩  𝑊 )  =  {  0  } ) | 
						
							| 16 |  | pgpfac1.ss | ⊢ ( 𝜑  →  ( 𝑆  ⊕  𝑊 )  ⊆  𝑈 ) | 
						
							| 17 |  | pgpfac1.2 | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝑤  ⊊  𝑈  ∧  𝐴  ∈  𝑤 )  →  ¬  ( 𝑆  ⊕  𝑊 )  ⊊  𝑤 ) ) | 
						
							| 18 |  | pgpfac1.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑈  ∖  ( 𝑆  ⊕  𝑊 ) ) ) | 
						
							| 19 |  | pgpfac1.mg | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 20 |  | pgpfac1.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 21 |  | pgpfac1.mw | ⊢ ( 𝜑  →  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) )  ∈  𝑊 ) | 
						
							| 22 | 18 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐶  ∈  ( 𝑆  ⊕  𝑊 ) ) | 
						
							| 23 |  | pgpprm | ⊢ ( 𝑃  pGrp  𝐺  →  𝑃  ∈  ℙ ) | 
						
							| 24 | 8 23 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 25 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 26 | 9 25 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 27 | 3 5 | gexcl2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  →  𝐸  ∈  ℕ ) | 
						
							| 28 | 26 10 27 | syl2anc | ⊢ ( 𝜑  →  𝐸  ∈  ℕ ) | 
						
							| 29 |  | pceq0 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐸  ∈  ℕ )  →  ( ( 𝑃  pCnt  𝐸 )  =  0  ↔  ¬  𝑃  ∥  𝐸 ) ) | 
						
							| 30 | 24 28 29 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  𝐸 )  =  0  ↔  ¬  𝑃  ∥  𝐸 ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( ( 𝑃  pCnt  𝐸 )  =  0  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 32 | 30 31 | biimtrrdi | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  𝐸  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) )  =  ( 𝑃 ↑ 0 ) ) ) | 
						
							| 33 | 3 | grpbn0 | ⊢ ( 𝐺  ∈  Grp  →  𝐵  ≠  ∅ ) | 
						
							| 34 | 26 33 | syl | ⊢ ( 𝜑  →  𝐵  ≠  ∅ ) | 
						
							| 35 |  | hashnncl | ⊢ ( 𝐵  ∈  Fin  →  ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 36 | 10 35 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 37 | 34 36 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 38 | 24 37 | pccld | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) )  ∈  ℕ0 ) | 
						
							| 39 | 3 5 | gexdvds3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  →  𝐸  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 40 | 26 10 39 | syl2anc | ⊢ ( 𝜑  →  𝐸  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 41 | 3 | pgphash | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 42 | 8 10 41 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 43 | 40 42 | breqtrd | ⊢ ( 𝜑  →  𝐸  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 45 | 44 | breq2d | ⊢ ( 𝑘  =  ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) )  →  ( 𝐸  ∥  ( 𝑃 ↑ 𝑘 )  ↔  𝐸  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) ) ) ) ) | 
						
							| 46 | 45 | rspcev | ⊢ ( ( ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) )  ∈  ℕ0  ∧  𝐸  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝐵 ) ) ) )  →  ∃ 𝑘  ∈  ℕ0 𝐸  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 47 | 38 43 46 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℕ0 𝐸  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 48 |  | pcprmpw2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐸  ∈  ℕ )  →  ( ∃ 𝑘  ∈  ℕ0 𝐸  ∥  ( 𝑃 ↑ 𝑘 )  ↔  𝐸  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) ) ) ) | 
						
							| 49 | 24 28 48 | syl2anc | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ℕ0 𝐸  ∥  ( 𝑃 ↑ 𝑘 )  ↔  𝐸  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) ) ) ) | 
						
							| 50 | 47 49 | mpbid | ⊢ ( 𝜑  →  𝐸  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) ) ) | 
						
							| 51 | 50 | eqcomd | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) )  =  𝐸 ) | 
						
							| 52 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 53 | 24 52 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 54 | 53 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 55 | 54 | exp0d | ⊢ ( 𝜑  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 56 | 51 55 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) )  =  ( 𝑃 ↑ 0 )  ↔  𝐸  =  1 ) ) | 
						
							| 57 | 26 | grpmndd | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 58 | 3 5 | gex1 | ⊢ ( 𝐺  ∈  Mnd  →  ( 𝐸  =  1  ↔  𝐵  ≈  1o ) ) | 
						
							| 59 | 57 58 | syl | ⊢ ( 𝜑  →  ( 𝐸  =  1  ↔  𝐵  ≈  1o ) ) | 
						
							| 60 | 56 59 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐸 ) )  =  ( 𝑃 ↑ 0 )  ↔  𝐵  ≈  1o ) ) | 
						
							| 61 | 32 60 | sylibd | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  𝐸  →  𝐵  ≈  1o ) ) | 
						
							| 62 | 3 | subgacs | ⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 63 | 26 62 | syl | ⊢ ( 𝜑  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 64 | 63 | acsmred | ⊢ ( 𝜑  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 65 | 3 | subgss | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →  𝑈  ⊆  𝐵 ) | 
						
							| 66 | 12 65 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  𝐵 ) | 
						
							| 67 | 66 13 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 68 | 1 | mrcsncl | ⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 69 | 64 67 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 70 | 2 69 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 71 | 7 | lsmsubg2 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑊  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑆  ⊕  𝑊 )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 72 | 9 70 14 71 | syl3anc | ⊢ ( 𝜑  →  ( 𝑆  ⊕  𝑊 )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 73 | 6 | subg0cl | ⊢ ( ( 𝑆  ⊕  𝑊 )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( 𝑆  ⊕  𝑊 ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝜑  →   0   ∈  ( 𝑆  ⊕  𝑊 ) ) | 
						
							| 75 | 74 | snssd | ⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑆  ⊕  𝑊 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≈  1o )  →  {  0  }  ⊆  ( 𝑆  ⊕  𝑊 ) ) | 
						
							| 77 | 18 | eldifad | ⊢ ( 𝜑  →  𝐶  ∈  𝑈 ) | 
						
							| 78 | 66 77 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝐵 ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≈  1o )  →  𝐶  ∈  𝐵 ) | 
						
							| 80 | 3 6 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝐵 ) | 
						
							| 81 | 26 80 | syl | ⊢ ( 𝜑  →   0   ∈  𝐵 ) | 
						
							| 82 |  | en1eqsn | ⊢ ( (  0   ∈  𝐵  ∧  𝐵  ≈  1o )  →  𝐵  =  {  0  } ) | 
						
							| 83 | 81 82 | sylan | ⊢ ( ( 𝜑  ∧  𝐵  ≈  1o )  →  𝐵  =  {  0  } ) | 
						
							| 84 | 79 83 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ≈  1o )  →  𝐶  ∈  {  0  } ) | 
						
							| 85 | 76 84 | sseldd | ⊢ ( ( 𝜑  ∧  𝐵  ≈  1o )  →  𝐶  ∈  ( 𝑆  ⊕  𝑊 ) ) | 
						
							| 86 | 85 | ex | ⊢ ( 𝜑  →  ( 𝐵  ≈  1o  →  𝐶  ∈  ( 𝑆  ⊕  𝑊 ) ) ) | 
						
							| 87 | 61 86 | syld | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  𝐸  →  𝐶  ∈  ( 𝑆  ⊕  𝑊 ) ) ) | 
						
							| 88 | 22 87 | mt3d | ⊢ ( 𝜑  →  𝑃  ∥  𝐸 ) | 
						
							| 89 | 28 | nncnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 90 | 53 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 91 | 89 54 90 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑃 )  ·  𝑃 )  =  𝐸 ) | 
						
							| 92 | 11 91 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  =  ( ( 𝐸  /  𝑃 )  ·  𝑃 ) ) | 
						
							| 93 |  | nndivdvds | ⊢ ( ( 𝐸  ∈  ℕ  ∧  𝑃  ∈  ℕ )  →  ( 𝑃  ∥  𝐸  ↔  ( 𝐸  /  𝑃 )  ∈  ℕ ) ) | 
						
							| 94 | 28 53 93 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝐸  ↔  ( 𝐸  /  𝑃 )  ∈  ℕ ) ) | 
						
							| 95 | 88 94 | mpbid | ⊢ ( 𝜑  →  ( 𝐸  /  𝑃 )  ∈  ℕ ) | 
						
							| 96 | 95 | nnzd | ⊢ ( 𝜑  →  ( 𝐸  /  𝑃 )  ∈  ℤ ) | 
						
							| 97 | 96 20 | zmulcld | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ∈  ℤ ) | 
						
							| 98 | 67 | snssd | ⊢ ( 𝜑  →  { 𝐴 }  ⊆  𝐵 ) | 
						
							| 99 | 64 1 98 | mrcssidd | ⊢ ( 𝜑  →  { 𝐴 }  ⊆  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 100 | 99 2 | sseqtrrdi | ⊢ ( 𝜑  →  { 𝐴 }  ⊆  𝑆 ) | 
						
							| 101 |  | snssg | ⊢ ( 𝐴  ∈  𝑈  →  ( 𝐴  ∈  𝑆  ↔  { 𝐴 }  ⊆  𝑆 ) ) | 
						
							| 102 | 13 101 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑆  ↔  { 𝐴 }  ⊆  𝑆 ) ) | 
						
							| 103 | 100 102 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 104 | 19 | subgmulgcl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ∈  ℤ  ∧  𝐴  ∈  𝑆 )  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  𝑆 ) | 
						
							| 105 | 70 97 103 104 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  𝑆 ) | 
						
							| 106 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 107 | 24 106 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 108 | 3 19 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℤ  ∧  𝐶  ∈  𝐵 )  →  ( 𝑃  ·  𝐶 )  ∈  𝐵 ) | 
						
							| 109 | 26 107 78 108 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ·  𝐶 )  ∈  𝐵 ) | 
						
							| 110 | 3 19 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑀  ∈  ℤ  ∧  𝐴  ∈  𝐵 )  →  ( 𝑀  ·  𝐴 )  ∈  𝐵 ) | 
						
							| 111 | 26 20 67 110 | syl3anc | ⊢ ( 𝜑  →  ( 𝑀  ·  𝐴 )  ∈  𝐵 ) | 
						
							| 112 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 113 | 3 19 112 | mulgdi | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( ( 𝐸  /  𝑃 )  ∈  ℤ  ∧  ( 𝑃  ·  𝐶 )  ∈  𝐵  ∧  ( 𝑀  ·  𝐴 )  ∈  𝐵 ) )  →  ( ( 𝐸  /  𝑃 )  ·  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) ) )  =  ( ( ( 𝐸  /  𝑃 )  ·  ( 𝑃  ·  𝐶 ) ) ( +g ‘ 𝐺 ) ( ( 𝐸  /  𝑃 )  ·  ( 𝑀  ·  𝐴 ) ) ) ) | 
						
							| 114 | 9 96 109 111 113 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑃 )  ·  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) ) )  =  ( ( ( 𝐸  /  𝑃 )  ·  ( 𝑃  ·  𝐶 ) ) ( +g ‘ 𝐺 ) ( ( 𝐸  /  𝑃 )  ·  ( 𝑀  ·  𝐴 ) ) ) ) | 
						
							| 115 | 91 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑃 )  ·  𝐶 )  =  ( 𝐸  ·  𝐶 ) ) | 
						
							| 116 | 3 19 | mulgass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝐸  /  𝑃 )  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  𝐶  ∈  𝐵 ) )  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑃 )  ·  𝐶 )  =  ( ( 𝐸  /  𝑃 )  ·  ( 𝑃  ·  𝐶 ) ) ) | 
						
							| 117 | 26 96 107 78 116 | syl13anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑃 )  ·  𝐶 )  =  ( ( 𝐸  /  𝑃 )  ·  ( 𝑃  ·  𝐶 ) ) ) | 
						
							| 118 | 3 5 19 6 | gexid | ⊢ ( 𝐶  ∈  𝐵  →  ( 𝐸  ·  𝐶 )  =   0  ) | 
						
							| 119 | 78 118 | syl | ⊢ ( 𝜑  →  ( 𝐸  ·  𝐶 )  =   0  ) | 
						
							| 120 | 115 117 119 | 3eqtr3rd | ⊢ ( 𝜑  →   0   =  ( ( 𝐸  /  𝑃 )  ·  ( 𝑃  ·  𝐶 ) ) ) | 
						
							| 121 | 3 19 | mulgass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝐸  /  𝑃 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝐴  ∈  𝐵 ) )  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  =  ( ( 𝐸  /  𝑃 )  ·  ( 𝑀  ·  𝐴 ) ) ) | 
						
							| 122 | 26 96 20 67 121 | syl13anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  =  ( ( 𝐸  /  𝑃 )  ·  ( 𝑀  ·  𝐴 ) ) ) | 
						
							| 123 | 120 122 | oveq12d | ⊢ ( 𝜑  →  (  0  ( +g ‘ 𝐺 ) ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 ) )  =  ( ( ( 𝐸  /  𝑃 )  ·  ( 𝑃  ·  𝐶 ) ) ( +g ‘ 𝐺 ) ( ( 𝐸  /  𝑃 )  ·  ( 𝑀  ·  𝐴 ) ) ) ) | 
						
							| 124 | 3 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 125 | 70 124 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 126 | 125 105 | sseldd | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  𝐵 ) | 
						
							| 127 | 3 112 6 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  𝐵 )  →  (  0  ( +g ‘ 𝐺 ) ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 ) )  =  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 ) ) | 
						
							| 128 | 26 126 127 | syl2anc | ⊢ ( 𝜑  →  (  0  ( +g ‘ 𝐺 ) ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 ) )  =  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 ) ) | 
						
							| 129 | 114 123 128 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑃 )  ·  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) ) )  =  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 ) ) | 
						
							| 130 | 19 | subgmulgcl | ⊢ ( ( 𝑊  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐸  /  𝑃 )  ∈  ℤ  ∧  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) )  ∈  𝑊 )  →  ( ( 𝐸  /  𝑃 )  ·  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) ) )  ∈  𝑊 ) | 
						
							| 131 | 14 96 21 130 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑃 )  ·  ( ( 𝑃  ·  𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝐴 ) ) )  ∈  𝑊 ) | 
						
							| 132 | 129 131 | eqeltrrd | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  𝑊 ) | 
						
							| 133 | 105 132 | elind | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  ( 𝑆  ∩  𝑊 ) ) | 
						
							| 134 | 133 15 | eleqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  {  0  } ) | 
						
							| 135 |  | elsni | ⊢ ( ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  ∈  {  0  }  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  =   0  ) | 
						
							| 136 | 134 135 | syl | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  =   0  ) | 
						
							| 137 | 3 4 19 6 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵  ∧  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ↔  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  =   0  ) ) | 
						
							| 138 | 26 67 97 137 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ↔  ( ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ·  𝐴 )  =   0  ) ) | 
						
							| 139 | 136 138 | mpbird | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝐸  /  𝑃 )  ·  𝑀 ) ) | 
						
							| 140 | 92 139 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑃 )  ·  𝑃 )  ∥  ( ( 𝐸  /  𝑃 )  ·  𝑀 ) ) | 
						
							| 141 | 95 | nnne0d | ⊢ ( 𝜑  →  ( 𝐸  /  𝑃 )  ≠  0 ) | 
						
							| 142 |  | dvdscmulr | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( ( 𝐸  /  𝑃 )  ∈  ℤ  ∧  ( 𝐸  /  𝑃 )  ≠  0 ) )  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑃 )  ∥  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ↔  𝑃  ∥  𝑀 ) ) | 
						
							| 143 | 107 20 96 141 142 | syl112anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  /  𝑃 )  ·  𝑃 )  ∥  ( ( 𝐸  /  𝑃 )  ·  𝑀 )  ↔  𝑃  ∥  𝑀 ) ) | 
						
							| 144 | 140 143 | mpbid | ⊢ ( 𝜑  →  𝑃  ∥  𝑀 ) | 
						
							| 145 | 88 144 | jca | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝐸  ∧  𝑃  ∥  𝑀 ) ) |