| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfac1.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 2 |  | pgpfac1.s |  |-  S = ( K ` { A } ) | 
						
							| 3 |  | pgpfac1.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | pgpfac1.o |  |-  O = ( od ` G ) | 
						
							| 5 |  | pgpfac1.e |  |-  E = ( gEx ` G ) | 
						
							| 6 |  | pgpfac1.z |  |-  .0. = ( 0g ` G ) | 
						
							| 7 |  | pgpfac1.l |  |-  .(+) = ( LSSum ` G ) | 
						
							| 8 |  | pgpfac1.p |  |-  ( ph -> P pGrp G ) | 
						
							| 9 |  | pgpfac1.g |  |-  ( ph -> G e. Abel ) | 
						
							| 10 |  | pgpfac1.n |  |-  ( ph -> B e. Fin ) | 
						
							| 11 |  | pgpfac1.oe |  |-  ( ph -> ( O ` A ) = E ) | 
						
							| 12 |  | pgpfac1.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 13 |  | pgpfac1.au |  |-  ( ph -> A e. U ) | 
						
							| 14 |  | pgpfac1.w |  |-  ( ph -> W e. ( SubGrp ` G ) ) | 
						
							| 15 |  | pgpfac1.i |  |-  ( ph -> ( S i^i W ) = { .0. } ) | 
						
							| 16 |  | pgpfac1.ss |  |-  ( ph -> ( S .(+) W ) C_ U ) | 
						
							| 17 |  | pgpfac1.2 |  |-  ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) | 
						
							| 18 |  | pgpfac1.c |  |-  ( ph -> C e. ( U \ ( S .(+) W ) ) ) | 
						
							| 19 |  | pgpfac1.mg |  |-  .x. = ( .g ` G ) | 
						
							| 20 |  | pgpfac1.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 21 |  | pgpfac1.mw |  |-  ( ph -> ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) e. W ) | 
						
							| 22 |  | pgpfac1.d |  |-  D = ( C ( +g ` G ) ( ( M / P ) .x. A ) ) | 
						
							| 23 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 24 | 9 23 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 25 | 3 | subgacs |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) | 
						
							| 26 |  | acsmre |  |-  ( ( SubGrp ` G ) e. ( ACS ` B ) -> ( SubGrp ` G ) e. ( Moore ` B ) ) | 
						
							| 27 | 24 25 26 | 3syl |  |-  ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) | 
						
							| 28 | 3 | subgss |  |-  ( U e. ( SubGrp ` G ) -> U C_ B ) | 
						
							| 29 | 12 28 | syl |  |-  ( ph -> U C_ B ) | 
						
							| 30 | 18 | eldifad |  |-  ( ph -> C e. U ) | 
						
							| 31 | 29 13 | sseldd |  |-  ( ph -> A e. B ) | 
						
							| 32 | 1 | mrcsncl |  |-  ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 34 | 2 33 | eqeltrid |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 35 | 7 | lsmub1 |  |-  ( ( S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> S C_ ( S .(+) W ) ) | 
						
							| 36 | 34 14 35 | syl2anc |  |-  ( ph -> S C_ ( S .(+) W ) ) | 
						
							| 37 | 36 16 | sstrd |  |-  ( ph -> S C_ U ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | pgpfac1lem3a |  |-  ( ph -> ( P || E /\ P || M ) ) | 
						
							| 39 | 38 | simprd |  |-  ( ph -> P || M ) | 
						
							| 40 |  | pgpprm |  |-  ( P pGrp G -> P e. Prime ) | 
						
							| 41 | 8 40 | syl |  |-  ( ph -> P e. Prime ) | 
						
							| 42 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 43 | 41 42 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 44 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 45 | 41 44 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 46 | 45 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 47 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ M e. ZZ ) -> ( P || M <-> ( M / P ) e. ZZ ) ) | 
						
							| 48 | 43 46 20 47 | syl3anc |  |-  ( ph -> ( P || M <-> ( M / P ) e. ZZ ) ) | 
						
							| 49 | 39 48 | mpbid |  |-  ( ph -> ( M / P ) e. ZZ ) | 
						
							| 50 | 31 | snssd |  |-  ( ph -> { A } C_ B ) | 
						
							| 51 | 27 1 50 | mrcssidd |  |-  ( ph -> { A } C_ ( K ` { A } ) ) | 
						
							| 52 | 51 2 | sseqtrrdi |  |-  ( ph -> { A } C_ S ) | 
						
							| 53 |  | snssg |  |-  ( A e. U -> ( A e. S <-> { A } C_ S ) ) | 
						
							| 54 | 13 53 | syl |  |-  ( ph -> ( A e. S <-> { A } C_ S ) ) | 
						
							| 55 | 52 54 | mpbird |  |-  ( ph -> A e. S ) | 
						
							| 56 | 19 | subgmulgcl |  |-  ( ( S e. ( SubGrp ` G ) /\ ( M / P ) e. ZZ /\ A e. S ) -> ( ( M / P ) .x. A ) e. S ) | 
						
							| 57 | 34 49 55 56 | syl3anc |  |-  ( ph -> ( ( M / P ) .x. A ) e. S ) | 
						
							| 58 | 37 57 | sseldd |  |-  ( ph -> ( ( M / P ) .x. A ) e. U ) | 
						
							| 59 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 60 | 59 | subgcl |  |-  ( ( U e. ( SubGrp ` G ) /\ C e. U /\ ( ( M / P ) .x. A ) e. U ) -> ( C ( +g ` G ) ( ( M / P ) .x. A ) ) e. U ) | 
						
							| 61 | 12 30 58 60 | syl3anc |  |-  ( ph -> ( C ( +g ` G ) ( ( M / P ) .x. A ) ) e. U ) | 
						
							| 62 | 22 61 | eqeltrid |  |-  ( ph -> D e. U ) | 
						
							| 63 | 29 62 | sseldd |  |-  ( ph -> D e. B ) | 
						
							| 64 | 1 | mrcsncl |  |-  ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ D e. B ) -> ( K ` { D } ) e. ( SubGrp ` G ) ) | 
						
							| 65 | 27 63 64 | syl2anc |  |-  ( ph -> ( K ` { D } ) e. ( SubGrp ` G ) ) | 
						
							| 66 | 7 | lsmsubg2 |  |-  ( ( G e. Abel /\ W e. ( SubGrp ` G ) /\ ( K ` { D } ) e. ( SubGrp ` G ) ) -> ( W .(+) ( K ` { D } ) ) e. ( SubGrp ` G ) ) | 
						
							| 67 | 9 14 65 66 | syl3anc |  |-  ( ph -> ( W .(+) ( K ` { D } ) ) e. ( SubGrp ` G ) ) | 
						
							| 68 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 69 | 68 7 14 65 | lsmelvalm |  |-  ( ph -> ( x e. ( W .(+) ( K ` { D } ) ) <-> E. w e. W E. y e. ( K ` { D } ) x = ( w ( -g ` G ) y ) ) ) | 
						
							| 70 |  | eqid |  |-  ( n e. ZZ |-> ( n .x. D ) ) = ( n e. ZZ |-> ( n .x. D ) ) | 
						
							| 71 | 3 19 70 1 | cycsubg2 |  |-  ( ( G e. Grp /\ D e. B ) -> ( K ` { D } ) = ran ( n e. ZZ |-> ( n .x. D ) ) ) | 
						
							| 72 | 24 63 71 | syl2anc |  |-  ( ph -> ( K ` { D } ) = ran ( n e. ZZ |-> ( n .x. D ) ) ) | 
						
							| 73 | 72 | rexeqdv |  |-  ( ph -> ( E. y e. ( K ` { D } ) x = ( w ( -g ` G ) y ) <-> E. y e. ran ( n e. ZZ |-> ( n .x. D ) ) x = ( w ( -g ` G ) y ) ) ) | 
						
							| 74 |  | ovex |  |-  ( n .x. D ) e. _V | 
						
							| 75 | 74 | rgenw |  |-  A. n e. ZZ ( n .x. D ) e. _V | 
						
							| 76 |  | oveq2 |  |-  ( y = ( n .x. D ) -> ( w ( -g ` G ) y ) = ( w ( -g ` G ) ( n .x. D ) ) ) | 
						
							| 77 | 76 | eqeq2d |  |-  ( y = ( n .x. D ) -> ( x = ( w ( -g ` G ) y ) <-> x = ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 78 | 70 77 | rexrnmptw |  |-  ( A. n e. ZZ ( n .x. D ) e. _V -> ( E. y e. ran ( n e. ZZ |-> ( n .x. D ) ) x = ( w ( -g ` G ) y ) <-> E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 79 | 75 78 | ax-mp |  |-  ( E. y e. ran ( n e. ZZ |-> ( n .x. D ) ) x = ( w ( -g ` G ) y ) <-> E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) ) | 
						
							| 80 | 73 79 | bitrdi |  |-  ( ph -> ( E. y e. ( K ` { D } ) x = ( w ( -g ` G ) y ) <-> E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 81 | 80 | rexbidv |  |-  ( ph -> ( E. w e. W E. y e. ( K ` { D } ) x = ( w ( -g ` G ) y ) <-> E. w e. W E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 82 | 69 81 | bitrd |  |-  ( ph -> ( x e. ( W .(+) ( K ` { D } ) ) <-> E. w e. W E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ x e. S ) -> ( x e. ( W .(+) ( K ` { D } ) ) <-> E. w e. W E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 84 |  | simpr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> x = ( w ( -g ` G ) ( n .x. D ) ) ) | 
						
							| 85 | 14 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> W e. ( SubGrp ` G ) ) | 
						
							| 86 |  | simplrl |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> w e. W ) | 
						
							| 87 |  | simplrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> n e. ZZ ) | 
						
							| 88 | 87 | zcnd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> n e. CC ) | 
						
							| 89 | 45 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 90 | 89 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> P e. CC ) | 
						
							| 91 | 46 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> P =/= 0 ) | 
						
							| 92 | 88 90 91 | divcan1d |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( n / P ) x. P ) = n ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( ( n / P ) x. P ) .x. D ) = ( n .x. D ) ) | 
						
							| 94 | 24 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> G e. Grp ) | 
						
							| 95 | 18 | eldifbd |  |-  ( ph -> -. C e. ( S .(+) W ) ) | 
						
							| 96 | 7 | lsmsubg2 |  |-  ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) | 
						
							| 97 | 9 34 14 96 | syl3anc |  |-  ( ph -> ( S .(+) W ) e. ( SubGrp ` G ) ) | 
						
							| 98 | 36 57 | sseldd |  |-  ( ph -> ( ( M / P ) .x. A ) e. ( S .(+) W ) ) | 
						
							| 99 | 68 | subgsubcl |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ D e. ( S .(+) W ) /\ ( ( M / P ) .x. A ) e. ( S .(+) W ) ) -> ( D ( -g ` G ) ( ( M / P ) .x. A ) ) e. ( S .(+) W ) ) | 
						
							| 100 | 99 | 3expia |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ D e. ( S .(+) W ) ) -> ( ( ( M / P ) .x. A ) e. ( S .(+) W ) -> ( D ( -g ` G ) ( ( M / P ) .x. A ) ) e. ( S .(+) W ) ) ) | 
						
							| 101 | 100 | impancom |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ ( ( M / P ) .x. A ) e. ( S .(+) W ) ) -> ( D e. ( S .(+) W ) -> ( D ( -g ` G ) ( ( M / P ) .x. A ) ) e. ( S .(+) W ) ) ) | 
						
							| 102 | 97 98 101 | syl2anc |  |-  ( ph -> ( D e. ( S .(+) W ) -> ( D ( -g ` G ) ( ( M / P ) .x. A ) ) e. ( S .(+) W ) ) ) | 
						
							| 103 | 22 | oveq1i |  |-  ( D ( -g ` G ) ( ( M / P ) .x. A ) ) = ( ( C ( +g ` G ) ( ( M / P ) .x. A ) ) ( -g ` G ) ( ( M / P ) .x. A ) ) | 
						
							| 104 | 29 30 | sseldd |  |-  ( ph -> C e. B ) | 
						
							| 105 | 3 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ B ) | 
						
							| 106 | 34 105 | syl |  |-  ( ph -> S C_ B ) | 
						
							| 107 | 106 57 | sseldd |  |-  ( ph -> ( ( M / P ) .x. A ) e. B ) | 
						
							| 108 | 3 59 68 | grppncan |  |-  ( ( G e. Grp /\ C e. B /\ ( ( M / P ) .x. A ) e. B ) -> ( ( C ( +g ` G ) ( ( M / P ) .x. A ) ) ( -g ` G ) ( ( M / P ) .x. A ) ) = C ) | 
						
							| 109 | 24 104 107 108 | syl3anc |  |-  ( ph -> ( ( C ( +g ` G ) ( ( M / P ) .x. A ) ) ( -g ` G ) ( ( M / P ) .x. A ) ) = C ) | 
						
							| 110 | 103 109 | eqtrid |  |-  ( ph -> ( D ( -g ` G ) ( ( M / P ) .x. A ) ) = C ) | 
						
							| 111 | 110 | eleq1d |  |-  ( ph -> ( ( D ( -g ` G ) ( ( M / P ) .x. A ) ) e. ( S .(+) W ) <-> C e. ( S .(+) W ) ) ) | 
						
							| 112 | 102 111 | sylibd |  |-  ( ph -> ( D e. ( S .(+) W ) -> C e. ( S .(+) W ) ) ) | 
						
							| 113 | 95 112 | mtod |  |-  ( ph -> -. D e. ( S .(+) W ) ) | 
						
							| 114 | 113 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> -. D e. ( S .(+) W ) ) | 
						
							| 115 | 41 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> P e. Prime ) | 
						
							| 116 |  | coprm |  |-  ( ( P e. Prime /\ n e. ZZ ) -> ( -. P || n <-> ( P gcd n ) = 1 ) ) | 
						
							| 117 | 115 87 116 | syl2anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( -. P || n <-> ( P gcd n ) = 1 ) ) | 
						
							| 118 | 43 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> P e. ZZ ) | 
						
							| 119 |  | bezout |  |-  ( ( P e. ZZ /\ n e. ZZ ) -> E. a e. ZZ E. b e. ZZ ( P gcd n ) = ( ( P x. a ) + ( n x. b ) ) ) | 
						
							| 120 | 118 87 119 | syl2anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> E. a e. ZZ E. b e. ZZ ( P gcd n ) = ( ( P x. a ) + ( n x. b ) ) ) | 
						
							| 121 |  | eqeq1 |  |-  ( ( P gcd n ) = 1 -> ( ( P gcd n ) = ( ( P x. a ) + ( n x. b ) ) <-> 1 = ( ( P x. a ) + ( n x. b ) ) ) ) | 
						
							| 122 | 121 | 2rexbidv |  |-  ( ( P gcd n ) = 1 -> ( E. a e. ZZ E. b e. ZZ ( P gcd n ) = ( ( P x. a ) + ( n x. b ) ) <-> E. a e. ZZ E. b e. ZZ 1 = ( ( P x. a ) + ( n x. b ) ) ) ) | 
						
							| 123 | 120 122 | syl5ibcom |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( P gcd n ) = 1 -> E. a e. ZZ E. b e. ZZ 1 = ( ( P x. a ) + ( n x. b ) ) ) ) | 
						
							| 124 | 94 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> G e. Grp ) | 
						
							| 125 | 118 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> P e. ZZ ) | 
						
							| 126 |  | simprl |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) | 
						
							| 127 | 125 126 | zmulcld |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( P x. a ) e. ZZ ) | 
						
							| 128 | 87 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> n e. ZZ ) | 
						
							| 129 |  | simprr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) | 
						
							| 130 | 128 129 | zmulcld |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( n x. b ) e. ZZ ) | 
						
							| 131 | 63 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> D e. B ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. B ) | 
						
							| 133 | 3 19 59 | mulgdir |  |-  ( ( G e. Grp /\ ( ( P x. a ) e. ZZ /\ ( n x. b ) e. ZZ /\ D e. B ) ) -> ( ( ( P x. a ) + ( n x. b ) ) .x. D ) = ( ( ( P x. a ) .x. D ) ( +g ` G ) ( ( n x. b ) .x. D ) ) ) | 
						
							| 134 | 124 127 130 132 133 | syl13anc |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( P x. a ) + ( n x. b ) ) .x. D ) = ( ( ( P x. a ) .x. D ) ( +g ` G ) ( ( n x. b ) .x. D ) ) ) | 
						
							| 135 | 97 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) | 
						
							| 137 | 90 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> P e. CC ) | 
						
							| 138 |  | zcn |  |-  ( a e. ZZ -> a e. CC ) | 
						
							| 139 | 138 | ad2antrl |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) | 
						
							| 140 | 137 139 | mulcomd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( P x. a ) = ( a x. P ) ) | 
						
							| 141 | 140 | oveq1d |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( P x. a ) .x. D ) = ( ( a x. P ) .x. D ) ) | 
						
							| 142 | 3 19 | mulgass |  |-  ( ( G e. Grp /\ ( a e. ZZ /\ P e. ZZ /\ D e. B ) ) -> ( ( a x. P ) .x. D ) = ( a .x. ( P .x. D ) ) ) | 
						
							| 143 | 124 126 125 132 142 | syl13anc |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. P ) .x. D ) = ( a .x. ( P .x. D ) ) ) | 
						
							| 144 | 141 143 | eqtrd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( P x. a ) .x. D ) = ( a .x. ( P .x. D ) ) ) | 
						
							| 145 | 7 | lsmub2 |  |-  ( ( S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> W C_ ( S .(+) W ) ) | 
						
							| 146 | 34 14 145 | syl2anc |  |-  ( ph -> W C_ ( S .(+) W ) ) | 
						
							| 147 | 22 | oveq2i |  |-  ( P .x. D ) = ( P .x. ( C ( +g ` G ) ( ( M / P ) .x. A ) ) ) | 
						
							| 148 | 3 19 59 | mulgdi |  |-  ( ( G e. Abel /\ ( P e. ZZ /\ C e. B /\ ( ( M / P ) .x. A ) e. B ) ) -> ( P .x. ( C ( +g ` G ) ( ( M / P ) .x. A ) ) ) = ( ( P .x. C ) ( +g ` G ) ( P .x. ( ( M / P ) .x. A ) ) ) ) | 
						
							| 149 | 9 43 104 107 148 | syl13anc |  |-  ( ph -> ( P .x. ( C ( +g ` G ) ( ( M / P ) .x. A ) ) ) = ( ( P .x. C ) ( +g ` G ) ( P .x. ( ( M / P ) .x. A ) ) ) ) | 
						
							| 150 | 147 149 | eqtrid |  |-  ( ph -> ( P .x. D ) = ( ( P .x. C ) ( +g ` G ) ( P .x. ( ( M / P ) .x. A ) ) ) ) | 
						
							| 151 | 3 19 | mulgass |  |-  ( ( G e. Grp /\ ( P e. ZZ /\ ( M / P ) e. ZZ /\ A e. B ) ) -> ( ( P x. ( M / P ) ) .x. A ) = ( P .x. ( ( M / P ) .x. A ) ) ) | 
						
							| 152 | 24 43 49 31 151 | syl13anc |  |-  ( ph -> ( ( P x. ( M / P ) ) .x. A ) = ( P .x. ( ( M / P ) .x. A ) ) ) | 
						
							| 153 | 20 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 154 | 153 89 46 | divcan2d |  |-  ( ph -> ( P x. ( M / P ) ) = M ) | 
						
							| 155 | 154 | oveq1d |  |-  ( ph -> ( ( P x. ( M / P ) ) .x. A ) = ( M .x. A ) ) | 
						
							| 156 | 152 155 | eqtr3d |  |-  ( ph -> ( P .x. ( ( M / P ) .x. A ) ) = ( M .x. A ) ) | 
						
							| 157 | 156 | oveq2d |  |-  ( ph -> ( ( P .x. C ) ( +g ` G ) ( P .x. ( ( M / P ) .x. A ) ) ) = ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) | 
						
							| 158 | 150 157 | eqtrd |  |-  ( ph -> ( P .x. D ) = ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) | 
						
							| 159 | 158 21 | eqeltrd |  |-  ( ph -> ( P .x. D ) e. W ) | 
						
							| 160 | 146 159 | sseldd |  |-  ( ph -> ( P .x. D ) e. ( S .(+) W ) ) | 
						
							| 161 | 160 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( P .x. D ) e. ( S .(+) W ) ) | 
						
							| 162 | 161 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( P .x. D ) e. ( S .(+) W ) ) | 
						
							| 163 | 19 | subgmulgcl |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ a e. ZZ /\ ( P .x. D ) e. ( S .(+) W ) ) -> ( a .x. ( P .x. D ) ) e. ( S .(+) W ) ) | 
						
							| 164 | 136 126 162 163 | syl3anc |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a .x. ( P .x. D ) ) e. ( S .(+) W ) ) | 
						
							| 165 | 144 164 | eqeltrd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( P x. a ) .x. D ) e. ( S .(+) W ) ) | 
						
							| 166 | 88 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> n e. CC ) | 
						
							| 167 |  | zcn |  |-  ( b e. ZZ -> b e. CC ) | 
						
							| 168 | 167 | ad2antll |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) | 
						
							| 169 | 166 168 | mulcomd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( n x. b ) = ( b x. n ) ) | 
						
							| 170 | 169 | oveq1d |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( n x. b ) .x. D ) = ( ( b x. n ) .x. D ) ) | 
						
							| 171 | 3 19 | mulgass |  |-  ( ( G e. Grp /\ ( b e. ZZ /\ n e. ZZ /\ D e. B ) ) -> ( ( b x. n ) .x. D ) = ( b .x. ( n .x. D ) ) ) | 
						
							| 172 | 124 129 128 132 171 | syl13anc |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. n ) .x. D ) = ( b .x. ( n .x. D ) ) ) | 
						
							| 173 | 170 172 | eqtrd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( n x. b ) .x. D ) = ( b .x. ( n .x. D ) ) ) | 
						
							| 174 | 84 | oveq2d |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( w ( -g ` G ) x ) = ( w ( -g ` G ) ( w ( -g ` G ) ( n .x. D ) ) ) ) | 
						
							| 175 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> G e. Abel ) | 
						
							| 176 | 3 | subgss |  |-  ( W e. ( SubGrp ` G ) -> W C_ B ) | 
						
							| 177 | 85 176 | syl |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> W C_ B ) | 
						
							| 178 | 177 86 | sseldd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> w e. B ) | 
						
							| 179 | 3 19 | mulgcl |  |-  ( ( G e. Grp /\ n e. ZZ /\ D e. B ) -> ( n .x. D ) e. B ) | 
						
							| 180 | 94 87 131 179 | syl3anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( n .x. D ) e. B ) | 
						
							| 181 | 3 68 175 178 180 | ablnncan |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( w ( -g ` G ) ( w ( -g ` G ) ( n .x. D ) ) ) = ( n .x. D ) ) | 
						
							| 182 | 174 181 | eqtrd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( w ( -g ` G ) x ) = ( n .x. D ) ) | 
						
							| 183 | 146 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> W C_ ( S .(+) W ) ) | 
						
							| 184 | 183 86 | sseldd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> w e. ( S .(+) W ) ) | 
						
							| 185 | 36 | sselda |  |-  ( ( ph /\ x e. S ) -> x e. ( S .(+) W ) ) | 
						
							| 186 | 185 | ad2antrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> x e. ( S .(+) W ) ) | 
						
							| 187 | 68 | subgsubcl |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ w e. ( S .(+) W ) /\ x e. ( S .(+) W ) ) -> ( w ( -g ` G ) x ) e. ( S .(+) W ) ) | 
						
							| 188 | 135 184 186 187 | syl3anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( w ( -g ` G ) x ) e. ( S .(+) W ) ) | 
						
							| 189 | 182 188 | eqeltrrd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( n .x. D ) e. ( S .(+) W ) ) | 
						
							| 190 | 189 | adantr |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( n .x. D ) e. ( S .(+) W ) ) | 
						
							| 191 | 19 | subgmulgcl |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ b e. ZZ /\ ( n .x. D ) e. ( S .(+) W ) ) -> ( b .x. ( n .x. D ) ) e. ( S .(+) W ) ) | 
						
							| 192 | 136 129 190 191 | syl3anc |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b .x. ( n .x. D ) ) e. ( S .(+) W ) ) | 
						
							| 193 | 173 192 | eqeltrd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( n x. b ) .x. D ) e. ( S .(+) W ) ) | 
						
							| 194 | 59 | subgcl |  |-  ( ( ( S .(+) W ) e. ( SubGrp ` G ) /\ ( ( P x. a ) .x. D ) e. ( S .(+) W ) /\ ( ( n x. b ) .x. D ) e. ( S .(+) W ) ) -> ( ( ( P x. a ) .x. D ) ( +g ` G ) ( ( n x. b ) .x. D ) ) e. ( S .(+) W ) ) | 
						
							| 195 | 136 165 193 194 | syl3anc |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( P x. a ) .x. D ) ( +g ` G ) ( ( n x. b ) .x. D ) ) e. ( S .(+) W ) ) | 
						
							| 196 | 134 195 | eqeltrd |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( P x. a ) + ( n x. b ) ) .x. D ) e. ( S .(+) W ) ) | 
						
							| 197 |  | oveq1 |  |-  ( 1 = ( ( P x. a ) + ( n x. b ) ) -> ( 1 .x. D ) = ( ( ( P x. a ) + ( n x. b ) ) .x. D ) ) | 
						
							| 198 | 197 | eleq1d |  |-  ( 1 = ( ( P x. a ) + ( n x. b ) ) -> ( ( 1 .x. D ) e. ( S .(+) W ) <-> ( ( ( P x. a ) + ( n x. b ) ) .x. D ) e. ( S .(+) W ) ) ) | 
						
							| 199 | 196 198 | syl5ibrcom |  |-  ( ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( 1 = ( ( P x. a ) + ( n x. b ) ) -> ( 1 .x. D ) e. ( S .(+) W ) ) ) | 
						
							| 200 | 199 | rexlimdvva |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( E. a e. ZZ E. b e. ZZ 1 = ( ( P x. a ) + ( n x. b ) ) -> ( 1 .x. D ) e. ( S .(+) W ) ) ) | 
						
							| 201 | 123 200 | syld |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( P gcd n ) = 1 -> ( 1 .x. D ) e. ( S .(+) W ) ) ) | 
						
							| 202 | 3 19 | mulg1 |  |-  ( D e. B -> ( 1 .x. D ) = D ) | 
						
							| 203 | 131 202 | syl |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( 1 .x. D ) = D ) | 
						
							| 204 | 203 | eleq1d |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( 1 .x. D ) e. ( S .(+) W ) <-> D e. ( S .(+) W ) ) ) | 
						
							| 205 | 201 204 | sylibd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( P gcd n ) = 1 -> D e. ( S .(+) W ) ) ) | 
						
							| 206 | 117 205 | sylbid |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( -. P || n -> D e. ( S .(+) W ) ) ) | 
						
							| 207 | 114 206 | mt3d |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> P || n ) | 
						
							| 208 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ n e. ZZ ) -> ( P || n <-> ( n / P ) e. ZZ ) ) | 
						
							| 209 | 118 91 87 208 | syl3anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( P || n <-> ( n / P ) e. ZZ ) ) | 
						
							| 210 | 207 209 | mpbid |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( n / P ) e. ZZ ) | 
						
							| 211 | 3 19 | mulgass |  |-  ( ( G e. Grp /\ ( ( n / P ) e. ZZ /\ P e. ZZ /\ D e. B ) ) -> ( ( ( n / P ) x. P ) .x. D ) = ( ( n / P ) .x. ( P .x. D ) ) ) | 
						
							| 212 | 94 210 118 131 211 | syl13anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( ( n / P ) x. P ) .x. D ) = ( ( n / P ) .x. ( P .x. D ) ) ) | 
						
							| 213 | 93 212 | eqtr3d |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( n .x. D ) = ( ( n / P ) .x. ( P .x. D ) ) ) | 
						
							| 214 | 159 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( P .x. D ) e. W ) | 
						
							| 215 | 19 | subgmulgcl |  |-  ( ( W e. ( SubGrp ` G ) /\ ( n / P ) e. ZZ /\ ( P .x. D ) e. W ) -> ( ( n / P ) .x. ( P .x. D ) ) e. W ) | 
						
							| 216 | 85 210 214 215 | syl3anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( ( n / P ) .x. ( P .x. D ) ) e. W ) | 
						
							| 217 | 213 216 | eqeltrd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( n .x. D ) e. W ) | 
						
							| 218 | 68 | subgsubcl |  |-  ( ( W e. ( SubGrp ` G ) /\ w e. W /\ ( n .x. D ) e. W ) -> ( w ( -g ` G ) ( n .x. D ) ) e. W ) | 
						
							| 219 | 85 86 217 218 | syl3anc |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> ( w ( -g ` G ) ( n .x. D ) ) e. W ) | 
						
							| 220 | 84 219 | eqeltrd |  |-  ( ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) /\ x = ( w ( -g ` G ) ( n .x. D ) ) ) -> x e. W ) | 
						
							| 221 | 220 | ex |  |-  ( ( ( ph /\ x e. S ) /\ ( w e. W /\ n e. ZZ ) ) -> ( x = ( w ( -g ` G ) ( n .x. D ) ) -> x e. W ) ) | 
						
							| 222 | 221 | rexlimdvva |  |-  ( ( ph /\ x e. S ) -> ( E. w e. W E. n e. ZZ x = ( w ( -g ` G ) ( n .x. D ) ) -> x e. W ) ) | 
						
							| 223 | 83 222 | sylbid |  |-  ( ( ph /\ x e. S ) -> ( x e. ( W .(+) ( K ` { D } ) ) -> x e. W ) ) | 
						
							| 224 | 223 | imdistanda |  |-  ( ph -> ( ( x e. S /\ x e. ( W .(+) ( K ` { D } ) ) ) -> ( x e. S /\ x e. W ) ) ) | 
						
							| 225 |  | elin |  |-  ( x e. ( S i^i ( W .(+) ( K ` { D } ) ) ) <-> ( x e. S /\ x e. ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 226 |  | elin |  |-  ( x e. ( S i^i W ) <-> ( x e. S /\ x e. W ) ) | 
						
							| 227 | 224 225 226 | 3imtr4g |  |-  ( ph -> ( x e. ( S i^i ( W .(+) ( K ` { D } ) ) ) -> x e. ( S i^i W ) ) ) | 
						
							| 228 | 227 | ssrdv |  |-  ( ph -> ( S i^i ( W .(+) ( K ` { D } ) ) ) C_ ( S i^i W ) ) | 
						
							| 229 | 228 15 | sseqtrd |  |-  ( ph -> ( S i^i ( W .(+) ( K ` { D } ) ) ) C_ { .0. } ) | 
						
							| 230 | 6 | subg0cl |  |-  ( S e. ( SubGrp ` G ) -> .0. e. S ) | 
						
							| 231 | 34 230 | syl |  |-  ( ph -> .0. e. S ) | 
						
							| 232 | 6 | subg0cl |  |-  ( ( W .(+) ( K ` { D } ) ) e. ( SubGrp ` G ) -> .0. e. ( W .(+) ( K ` { D } ) ) ) | 
						
							| 233 | 67 232 | syl |  |-  ( ph -> .0. e. ( W .(+) ( K ` { D } ) ) ) | 
						
							| 234 | 231 233 | elind |  |-  ( ph -> .0. e. ( S i^i ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 235 | 234 | snssd |  |-  ( ph -> { .0. } C_ ( S i^i ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 236 | 229 235 | eqssd |  |-  ( ph -> ( S i^i ( W .(+) ( K ` { D } ) ) ) = { .0. } ) | 
						
							| 237 | 7 | lsmass |  |-  ( ( S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) /\ ( K ` { D } ) e. ( SubGrp ` G ) ) -> ( ( S .(+) W ) .(+) ( K ` { D } ) ) = ( S .(+) ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 238 | 34 14 65 237 | syl3anc |  |-  ( ph -> ( ( S .(+) W ) .(+) ( K ` { D } ) ) = ( S .(+) ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 239 | 62 113 | eldifd |  |-  ( ph -> D e. ( U \ ( S .(+) W ) ) ) | 
						
							| 240 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pgpfac1lem1 |  |-  ( ( ph /\ D e. ( U \ ( S .(+) W ) ) ) -> ( ( S .(+) W ) .(+) ( K ` { D } ) ) = U ) | 
						
							| 241 | 239 240 | mpdan |  |-  ( ph -> ( ( S .(+) W ) .(+) ( K ` { D } ) ) = U ) | 
						
							| 242 | 238 241 | eqtr3d |  |-  ( ph -> ( S .(+) ( W .(+) ( K ` { D } ) ) ) = U ) | 
						
							| 243 |  | ineq2 |  |-  ( t = ( W .(+) ( K ` { D } ) ) -> ( S i^i t ) = ( S i^i ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 244 | 243 | eqeq1d |  |-  ( t = ( W .(+) ( K ` { D } ) ) -> ( ( S i^i t ) = { .0. } <-> ( S i^i ( W .(+) ( K ` { D } ) ) ) = { .0. } ) ) | 
						
							| 245 |  | oveq2 |  |-  ( t = ( W .(+) ( K ` { D } ) ) -> ( S .(+) t ) = ( S .(+) ( W .(+) ( K ` { D } ) ) ) ) | 
						
							| 246 | 245 | eqeq1d |  |-  ( t = ( W .(+) ( K ` { D } ) ) -> ( ( S .(+) t ) = U <-> ( S .(+) ( W .(+) ( K ` { D } ) ) ) = U ) ) | 
						
							| 247 | 244 246 | anbi12d |  |-  ( t = ( W .(+) ( K ` { D } ) ) -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) <-> ( ( S i^i ( W .(+) ( K ` { D } ) ) ) = { .0. } /\ ( S .(+) ( W .(+) ( K ` { D } ) ) ) = U ) ) ) | 
						
							| 248 | 247 | rspcev |  |-  ( ( ( W .(+) ( K ` { D } ) ) e. ( SubGrp ` G ) /\ ( ( S i^i ( W .(+) ( K ` { D } ) ) ) = { .0. } /\ ( S .(+) ( W .(+) ( K ` { D } ) ) ) = U ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) | 
						
							| 249 | 67 236 242 248 | syl12anc |  |-  ( ph -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |