| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmunb | ⊢ ( 𝑁  ∈  ℕ  →  ∃ 𝑛  ∈  ℙ 𝑁  <  𝑛 ) | 
						
							| 2 |  | eqid | ⊢ { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  =  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } | 
						
							| 3 | 2 | prmgaplem4 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ∃ 𝑝  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧 ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑞  =  𝑝  →  ( 𝑁  <  𝑞  ↔  𝑁  <  𝑝 ) ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑞  =  𝑝  →  ( 𝑞  ≤  𝑛  ↔  𝑝  ≤  𝑛 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑞  =  𝑝  →  ( ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 )  ↔  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑝  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  ↔  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) | 
						
							| 8 |  | simplrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  ∧  ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧 )  →  𝑝  ∈  ℙ ) | 
						
							| 9 |  | simprrl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  𝑁  <  𝑝 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  ∧  ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧 )  →  𝑁  <  𝑝 ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑞  =  𝑧  →  ( 𝑁  <  𝑞  ↔  𝑁  <  𝑧 ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑞  =  𝑧  →  ( 𝑞  ≤  𝑛  ↔  𝑧  ≤  𝑛 ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( 𝑞  =  𝑧  →  ( ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 )  ↔  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) )  →  𝑧  ∈  ℙ ) | 
						
							| 15 |  | elfzo2 | ⊢ ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  ↔  ( 𝑧  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ∧  𝑝  ∈  ℤ  ∧  𝑧  <  𝑝 ) ) | 
						
							| 16 |  | eluz2 | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ↔  ( ( 𝑁  +  1 )  ∈  ℤ  ∧  𝑧  ∈  ℤ  ∧  ( 𝑁  +  1 )  ≤  𝑧 ) ) | 
						
							| 17 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 18 |  | prmz | ⊢ ( 𝑧  ∈  ℙ  →  𝑧  ∈  ℤ ) | 
						
							| 19 |  | zltp1le | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 𝑁  <  𝑧  ↔  ( 𝑁  +  1 )  ≤  𝑧 ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑧  ∈  ℙ )  →  ( 𝑁  <  𝑧  ↔  ( 𝑁  +  1 )  ≤  𝑧 ) ) | 
						
							| 21 | 20 | exbiri | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑧  ∈  ℙ  →  ( ( 𝑁  +  1 )  ≤  𝑧  →  𝑁  <  𝑧 ) ) ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑧  ∈  ℙ  →  ( ( 𝑁  +  1 )  ≤  𝑧  →  𝑁  <  𝑧 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( 𝑧  ∈  ℙ  →  ( ( 𝑁  +  1 )  ≤  𝑧  →  𝑁  <  𝑧 ) ) ) | 
						
							| 24 | 23 | impcom | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( ( 𝑁  +  1 )  ≤  𝑧  →  𝑁  <  𝑧 ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( ( 𝑁  +  1 )  ≤  𝑧  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  𝑁  <  𝑧 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝑁  +  1 )  ≤  𝑧  ∧  𝑝  ∈  ℤ )  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  𝑁  <  𝑧 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ( 𝑁  +  1 )  ≤  𝑧  ∧  𝑝  ∈  ℤ )  ∧  𝑧  <  𝑝 )  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  𝑁  <  𝑧 ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( ( ( 𝑁  +  1 )  ≤  𝑧  ∧  𝑝  ∈  ℤ )  ∧  𝑧  <  𝑝 )  ∧  ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) ) )  →  𝑁  <  𝑧 ) | 
						
							| 29 |  | prmnn | ⊢ ( 𝑧  ∈  ℙ  →  𝑧  ∈  ℕ ) | 
						
							| 30 | 29 | nnred | ⊢ ( 𝑧  ∈  ℙ  →  𝑧  ∈  ℝ ) | 
						
							| 31 | 30 | ad2antrl | ⊢ ( ( 𝑛  ∈  ℙ  ∧  ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ ) )  →  𝑧  ∈  ℝ ) | 
						
							| 32 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 33 | 32 | nnred | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℝ ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑛  ∈  ℙ  ∧  ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ ) )  →  𝑝  ∈  ℝ ) | 
						
							| 36 |  | prmnn | ⊢ ( 𝑛  ∈  ℙ  →  𝑛  ∈  ℕ ) | 
						
							| 37 | 36 | nnred | ⊢ ( 𝑛  ∈  ℙ  →  𝑛  ∈  ℝ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑛  ∈  ℙ  ∧  ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ ) )  →  𝑛  ∈  ℝ ) | 
						
							| 39 |  | ltleletr | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑝  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( ( 𝑧  <  𝑝  ∧  𝑝  ≤  𝑛 )  →  𝑧  ≤  𝑛 ) ) | 
						
							| 40 | 31 35 38 39 | syl3anc | ⊢ ( ( 𝑛  ∈  ℙ  ∧  ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ ) )  →  ( ( 𝑧  <  𝑝  ∧  𝑝  ≤  𝑛 )  →  𝑧  ≤  𝑛 ) ) | 
						
							| 41 | 40 | exp4b | ⊢ ( 𝑛  ∈  ℙ  →  ( ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ )  →  ( 𝑧  <  𝑝  →  ( 𝑝  ≤  𝑛  →  𝑧  ≤  𝑛 ) ) ) ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( ( 𝑧  ∈  ℙ  ∧  𝑝  ∈  ℙ )  →  ( 𝑧  <  𝑝  →  ( 𝑝  ≤  𝑛  →  𝑧  ≤  𝑛 ) ) ) ) | 
						
							| 43 | 42 | expdcom | ⊢ ( 𝑧  ∈  ℙ  →  ( 𝑝  ∈  ℙ  →  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑧  <  𝑝  →  ( 𝑝  ≤  𝑛  →  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 44 | 43 | com45 | ⊢ ( 𝑧  ∈  ℙ  →  ( 𝑝  ∈  ℙ  →  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑝  ≤  𝑛  →  ( 𝑧  <  𝑝  →  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 45 | 44 | com14 | ⊢ ( 𝑝  ≤  𝑛  →  ( 𝑝  ∈  ℙ  →  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑧  ∈  ℙ  →  ( 𝑧  <  𝑝  →  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 )  →  ( 𝑝  ∈  ℙ  →  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑧  ∈  ℙ  →  ( 𝑧  <  𝑝  →  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 47 | 46 | impcom | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) )  →  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑧  ∈  ℙ  →  ( 𝑧  <  𝑝  →  𝑧  ≤  𝑛 ) ) ) ) | 
						
							| 48 | 47 | impcom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( 𝑧  ∈  ℙ  →  ( 𝑧  <  𝑝  →  𝑧  ≤  𝑛 ) ) ) | 
						
							| 49 | 48 | impcom | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑧  <  𝑝  →  𝑧  ≤  𝑛 ) ) | 
						
							| 50 | 49 | adantld | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( ( ( ( 𝑁  +  1 )  ≤  𝑧  ∧  𝑝  ∈  ℤ )  ∧  𝑧  <  𝑝 )  →  𝑧  ≤  𝑛 ) ) | 
						
							| 51 | 50 | impcom | ⊢ ( ( ( ( ( 𝑁  +  1 )  ≤  𝑧  ∧  𝑝  ∈  ℤ )  ∧  𝑧  <  𝑝 )  ∧  ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) ) )  →  𝑧  ≤  𝑛 ) | 
						
							| 52 | 28 51 | jca | ⊢ ( ( ( ( ( 𝑁  +  1 )  ≤  𝑧  ∧  𝑝  ∈  ℤ )  ∧  𝑧  <  𝑝 )  ∧  ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) | 
						
							| 53 | 52 | exp41 | ⊢ ( ( 𝑁  +  1 )  ≤  𝑧  →  ( 𝑝  ∈  ℤ  →  ( 𝑧  <  𝑝  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 54 | 53 | 3ad2ant3 | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℤ  ∧  𝑧  ∈  ℤ  ∧  ( 𝑁  +  1 )  ≤  𝑧 )  →  ( 𝑝  ∈  ℤ  →  ( 𝑧  <  𝑝  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 55 | 16 54 | sylbi | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝑝  ∈  ℤ  →  ( 𝑧  <  𝑝  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) ) ) ) | 
						
							| 56 | 55 | 3imp | ⊢ ( ( 𝑧  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ∧  𝑝  ∈  ℤ  ∧  𝑧  <  𝑝 )  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) ) | 
						
							| 57 | 15 56 | sylbi | ⊢ ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) ) | 
						
							| 58 | 57 | impcom | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) )  →  ( 𝑁  <  𝑧  ∧  𝑧  ≤  𝑛 ) ) | 
						
							| 59 | 13 14 58 | elrabd | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) )  →  𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } ) | 
						
							| 60 |  | elfzolt2 | ⊢ ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  <  𝑝 ) | 
						
							| 61 | 33 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  𝑝  ∈  ℝ ) | 
						
							| 62 |  | ltnle | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( 𝑧  <  𝑝  ↔  ¬  𝑝  ≤  𝑧 ) ) | 
						
							| 63 | 62 | biimpd | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( 𝑧  <  𝑝  →  ¬  𝑝  ≤  𝑧 ) ) | 
						
							| 64 | 30 61 63 | syl2an | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑧  <  𝑝  →  ¬  𝑝  ≤  𝑧 ) ) | 
						
							| 65 | 64 | imp | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  <  𝑝 )  →  ¬  𝑝  ≤  𝑧 ) | 
						
							| 66 | 65 | pm2.21d | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  <  𝑝 )  →  ( 𝑝  ≤  𝑧  →  𝑧  ∉  ℙ ) ) | 
						
							| 67 | 60 66 | sylan2 | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) )  →  ( 𝑝  ≤  𝑧  →  𝑧  ∉  ℙ ) ) | 
						
							| 68 | 59 67 | embantd | ⊢ ( ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  ∧  𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  𝑧  ∉  ℙ ) ) | 
						
							| 69 | 68 | ex | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  𝑧  ∉  ℙ ) ) ) | 
						
							| 70 | 69 | com23 | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) ) )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  ∉  ℙ ) ) ) | 
						
							| 71 | 70 | ex | ⊢ ( 𝑧  ∈  ℙ  →  ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  ∉  ℙ ) ) ) ) | 
						
							| 72 |  | df-nel | ⊢ ( 𝑧  ∉  ℙ  ↔  ¬  𝑧  ∈  ℙ ) | 
						
							| 73 |  | 2a1 | ⊢ ( 𝑧  ∉  ℙ  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  ∉  ℙ ) ) ) | 
						
							| 74 | 73 | a1d | ⊢ ( 𝑧  ∉  ℙ  →  ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  ∉  ℙ ) ) ) ) | 
						
							| 75 | 72 74 | sylbir | ⊢ ( ¬  𝑧  ∈  ℙ  →  ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  ∉  ℙ ) ) ) ) | 
						
							| 76 | 71 75 | pm2.61i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( ( 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  𝑝  ≤  𝑧 )  →  ( 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 )  →  𝑧  ∉  ℙ ) ) ) | 
						
							| 77 | 76 | ralimdv2 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  →  ( ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧  →  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) | 
						
							| 78 | 77 | imp | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  ∧  ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧 )  →  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) | 
						
							| 79 | 8 10 78 | jca32 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) ) )  ∧  ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧 )  →  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) ) | 
						
							| 80 | 79 | exp31 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  𝑝  ≤  𝑛 ) )  →  ( ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧  →  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) ) ) ) | 
						
							| 81 | 7 80 | biimtrid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( 𝑝  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  →  ( ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧  →  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) ) ) ) | 
						
							| 82 | 81 | impd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( ( 𝑝  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) }  ∧  ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧 )  →  ( 𝑝  ∈  ℙ  ∧  ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) ) ) | 
						
							| 83 | 82 | reximdv2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ( ∃ 𝑝  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } ∀ 𝑧  ∈  { 𝑞  ∈  ℙ  ∣  ( 𝑁  <  𝑞  ∧  𝑞  ≤  𝑛 ) } 𝑝  ≤  𝑧  →  ∃ 𝑝  ∈  ℙ ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) ) | 
						
							| 84 | 3 83 | mpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℙ  ∧  𝑁  <  𝑛 )  →  ∃ 𝑝  ∈  ℙ ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) | 
						
							| 85 | 84 | rexlimdv3a | ⊢ ( 𝑁  ∈  ℕ  →  ( ∃ 𝑛  ∈  ℙ 𝑁  <  𝑛  →  ∃ 𝑝  ∈  ℙ ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) ) | 
						
							| 86 | 1 85 | mpd | ⊢ ( 𝑁  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ ( 𝑁  <  𝑝  ∧  ∀ 𝑧  ∈  ( ( 𝑁  +  1 ) ..^ 𝑝 ) 𝑧  ∉  ℙ ) ) |