| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmunb |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑛 ∈ ℙ 𝑁 < 𝑛 ) |
| 2 |
|
eqid |
⊢ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } = { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } |
| 3 |
2
|
prmgaplem4 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ∃ 𝑝 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 ) |
| 4 |
|
breq2 |
⊢ ( 𝑞 = 𝑝 → ( 𝑁 < 𝑞 ↔ 𝑁 < 𝑝 ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 ≤ 𝑛 ↔ 𝑝 ≤ 𝑛 ) ) |
| 6 |
4 5
|
anbi12d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) ↔ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) |
| 7 |
6
|
elrab |
⊢ ( 𝑝 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) |
| 8 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ∧ ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 ) → 𝑝 ∈ ℙ ) |
| 9 |
|
simprrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → 𝑁 < 𝑝 ) |
| 10 |
9
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ∧ ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 ) → 𝑁 < 𝑝 ) |
| 11 |
|
breq2 |
⊢ ( 𝑞 = 𝑧 → ( 𝑁 < 𝑞 ↔ 𝑁 < 𝑧 ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑞 = 𝑧 → ( 𝑞 ≤ 𝑛 ↔ 𝑧 ≤ 𝑛 ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( 𝑞 = 𝑧 → ( ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) ↔ ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) ) → 𝑧 ∈ ℙ ) |
| 15 |
|
elfzo2 |
⊢ ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) ↔ ( 𝑧 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝 ) ) |
| 16 |
|
eluz2 |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ↔ ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑧 ) ) |
| 17 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 18 |
|
prmz |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) |
| 19 |
|
zltp1le |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑁 < 𝑧 ↔ ( 𝑁 + 1 ) ≤ 𝑧 ) ) |
| 20 |
17 18 19
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℙ ) → ( 𝑁 < 𝑧 ↔ ( 𝑁 + 1 ) ≤ 𝑧 ) ) |
| 21 |
20
|
exbiri |
⊢ ( 𝑁 ∈ ℕ → ( 𝑧 ∈ ℙ → ( ( 𝑁 + 1 ) ≤ 𝑧 → 𝑁 < 𝑧 ) ) ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑧 ∈ ℙ → ( ( 𝑁 + 1 ) ≤ 𝑧 → 𝑁 < 𝑧 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( 𝑧 ∈ ℙ → ( ( 𝑁 + 1 ) ≤ 𝑧 → 𝑁 < 𝑧 ) ) ) |
| 24 |
23
|
impcom |
⊢ ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( ( 𝑁 + 1 ) ≤ 𝑧 → 𝑁 < 𝑧 ) ) |
| 25 |
24
|
com12 |
⊢ ( ( 𝑁 + 1 ) ≤ 𝑧 → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → 𝑁 < 𝑧 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑁 + 1 ) ≤ 𝑧 ∧ 𝑝 ∈ ℤ ) → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → 𝑁 < 𝑧 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( ( 𝑁 + 1 ) ≤ 𝑧 ∧ 𝑝 ∈ ℤ ) ∧ 𝑧 < 𝑝 ) → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → 𝑁 < 𝑧 ) ) |
| 28 |
27
|
imp |
⊢ ( ( ( ( ( 𝑁 + 1 ) ≤ 𝑧 ∧ 𝑝 ∈ ℤ ) ∧ 𝑧 < 𝑝 ) ∧ ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ) → 𝑁 < 𝑧 ) |
| 29 |
|
prmnn |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℕ ) |
| 30 |
29
|
nnred |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℝ ) |
| 31 |
30
|
ad2antrl |
⊢ ( ( 𝑛 ∈ ℙ ∧ ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ) → 𝑧 ∈ ℝ ) |
| 32 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 33 |
32
|
nnred |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℝ ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑛 ∈ ℙ ∧ ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ) → 𝑝 ∈ ℝ ) |
| 36 |
|
prmnn |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℕ ) |
| 37 |
36
|
nnred |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℝ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑛 ∈ ℙ ∧ ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ) → 𝑛 ∈ ℝ ) |
| 39 |
|
ltleletr |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 𝑧 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) → 𝑧 ≤ 𝑛 ) ) |
| 40 |
31 35 38 39
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℙ ∧ ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ) → ( ( 𝑧 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) → 𝑧 ≤ 𝑛 ) ) |
| 41 |
40
|
exp4b |
⊢ ( 𝑛 ∈ ℙ → ( ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → ( 𝑧 < 𝑝 → ( 𝑝 ≤ 𝑛 → 𝑧 ≤ 𝑛 ) ) ) ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → ( 𝑧 < 𝑝 → ( 𝑝 ≤ 𝑛 → 𝑧 ≤ 𝑛 ) ) ) ) |
| 43 |
42
|
expdcom |
⊢ ( 𝑧 ∈ ℙ → ( 𝑝 ∈ ℙ → ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑧 < 𝑝 → ( 𝑝 ≤ 𝑛 → 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 44 |
43
|
com45 |
⊢ ( 𝑧 ∈ ℙ → ( 𝑝 ∈ ℙ → ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑝 ≤ 𝑛 → ( 𝑧 < 𝑝 → 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 45 |
44
|
com14 |
⊢ ( 𝑝 ≤ 𝑛 → ( 𝑝 ∈ ℙ → ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑧 ∈ ℙ → ( 𝑧 < 𝑝 → 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) → ( 𝑝 ∈ ℙ → ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑧 ∈ ℙ → ( 𝑧 < 𝑝 → 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 47 |
46
|
impcom |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑧 ∈ ℙ → ( 𝑧 < 𝑝 → 𝑧 ≤ 𝑛 ) ) ) ) |
| 48 |
47
|
impcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( 𝑧 ∈ ℙ → ( 𝑧 < 𝑝 → 𝑧 ≤ 𝑛 ) ) ) |
| 49 |
48
|
impcom |
⊢ ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑧 < 𝑝 → 𝑧 ≤ 𝑛 ) ) |
| 50 |
49
|
adantld |
⊢ ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( ( ( ( 𝑁 + 1 ) ≤ 𝑧 ∧ 𝑝 ∈ ℤ ) ∧ 𝑧 < 𝑝 ) → 𝑧 ≤ 𝑛 ) ) |
| 51 |
50
|
impcom |
⊢ ( ( ( ( ( 𝑁 + 1 ) ≤ 𝑧 ∧ 𝑝 ∈ ℤ ) ∧ 𝑧 < 𝑝 ) ∧ ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ) → 𝑧 ≤ 𝑛 ) |
| 52 |
28 51
|
jca |
⊢ ( ( ( ( ( 𝑁 + 1 ) ≤ 𝑧 ∧ 𝑝 ∈ ℤ ) ∧ 𝑧 < 𝑝 ) ∧ ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) |
| 53 |
52
|
exp41 |
⊢ ( ( 𝑁 + 1 ) ≤ 𝑧 → ( 𝑝 ∈ ℤ → ( 𝑧 < 𝑝 → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 54 |
53
|
3ad2ant3 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑧 ) → ( 𝑝 ∈ ℤ → ( 𝑧 < 𝑝 → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 55 |
16 54
|
sylbi |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝑝 ∈ ℤ → ( 𝑧 < 𝑝 → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) ) ) ) |
| 56 |
55
|
3imp |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝 ) → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) ) |
| 57 |
15 56
|
sylbi |
⊢ ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) ) |
| 58 |
57
|
impcom |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) ) → ( 𝑁 < 𝑧 ∧ 𝑧 ≤ 𝑛 ) ) |
| 59 |
13 14 58
|
elrabd |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) ) → 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } ) |
| 60 |
|
elfzolt2 |
⊢ ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 < 𝑝 ) |
| 61 |
33
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → 𝑝 ∈ ℝ ) |
| 62 |
|
ltnle |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → ( 𝑧 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑧 ) ) |
| 63 |
62
|
biimpd |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → ( 𝑧 < 𝑝 → ¬ 𝑝 ≤ 𝑧 ) ) |
| 64 |
30 61 63
|
syl2an |
⊢ ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑧 < 𝑝 → ¬ 𝑝 ≤ 𝑧 ) ) |
| 65 |
64
|
imp |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 < 𝑝 ) → ¬ 𝑝 ≤ 𝑧 ) |
| 66 |
65
|
pm2.21d |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 < 𝑝 ) → ( 𝑝 ≤ 𝑧 → 𝑧 ∉ ℙ ) ) |
| 67 |
60 66
|
sylan2 |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) ) → ( 𝑝 ≤ 𝑧 → 𝑧 ∉ ℙ ) ) |
| 68 |
59 67
|
embantd |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) ∧ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → 𝑧 ∉ ℙ ) ) |
| 69 |
68
|
ex |
⊢ ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → 𝑧 ∉ ℙ ) ) ) |
| 70 |
69
|
com23 |
⊢ ( ( 𝑧 ∈ ℙ ∧ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 ∉ ℙ ) ) ) |
| 71 |
70
|
ex |
⊢ ( 𝑧 ∈ ℙ → ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 ∉ ℙ ) ) ) ) |
| 72 |
|
df-nel |
⊢ ( 𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ ) |
| 73 |
|
2a1 |
⊢ ( 𝑧 ∉ ℙ → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 ∉ ℙ ) ) ) |
| 74 |
73
|
a1d |
⊢ ( 𝑧 ∉ ℙ → ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 ∉ ℙ ) ) ) ) |
| 75 |
72 74
|
sylbir |
⊢ ( ¬ 𝑧 ∈ ℙ → ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 ∉ ℙ ) ) ) ) |
| 76 |
71 75
|
pm2.61i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( ( 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → 𝑝 ≤ 𝑧 ) → ( 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) → 𝑧 ∉ ℙ ) ) ) |
| 77 |
76
|
ralimdv2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) → ( ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 → ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) |
| 78 |
77
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ∧ ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 ) → ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) |
| 79 |
8 10 78
|
jca32 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) ) ∧ ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 ) → ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) ) |
| 80 |
79
|
exp31 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑛 ) ) → ( ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 → ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) ) ) ) |
| 81 |
7 80
|
biimtrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( 𝑝 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } → ( ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 → ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) ) ) ) |
| 82 |
81
|
impd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( ( 𝑝 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } ∧ ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 ) → ( 𝑝 ∈ ℙ ∧ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) ) ) |
| 83 |
82
|
reximdv2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ( ∃ 𝑝 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } ∀ 𝑧 ∈ { 𝑞 ∈ ℙ ∣ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ 𝑛 ) } 𝑝 ≤ 𝑧 → ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) ) |
| 84 |
3 83
|
mpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛 ) → ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) |
| 85 |
84
|
rexlimdv3a |
⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℙ 𝑁 < 𝑛 → ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) ) |
| 86 |
1 85
|
mpd |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ ∀ 𝑧 ∈ ( ( 𝑁 + 1 ) ..^ 𝑝 ) 𝑧 ∉ ℙ ) ) |