| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmunb |
|
| 2 |
|
eqid |
|
| 3 |
2
|
prmgaplem4 |
|
| 4 |
|
breq2 |
|
| 5 |
|
breq1 |
|
| 6 |
4 5
|
anbi12d |
|
| 7 |
6
|
elrab |
|
| 8 |
|
simplrl |
|
| 9 |
|
simprrl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
breq2 |
|
| 12 |
|
breq1 |
|
| 13 |
11 12
|
anbi12d |
|
| 14 |
|
simpll |
|
| 15 |
|
elfzo2 |
|
| 16 |
|
eluz2 |
|
| 17 |
|
nnz |
|
| 18 |
|
prmz |
|
| 19 |
|
zltp1le |
|
| 20 |
17 18 19
|
syl2an |
|
| 21 |
20
|
exbiri |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
impcom |
|
| 25 |
24
|
com12 |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
imp |
|
| 29 |
|
prmnn |
|
| 30 |
29
|
nnred |
|
| 31 |
30
|
ad2antrl |
|
| 32 |
|
prmnn |
|
| 33 |
32
|
nnred |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
adantl |
|
| 36 |
|
prmnn |
|
| 37 |
36
|
nnred |
|
| 38 |
37
|
adantr |
|
| 39 |
|
ltleletr |
|
| 40 |
31 35 38 39
|
syl3anc |
|
| 41 |
40
|
exp4b |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
42
|
expdcom |
|
| 44 |
43
|
com45 |
|
| 45 |
44
|
com14 |
|
| 46 |
45
|
adantl |
|
| 47 |
46
|
impcom |
|
| 48 |
47
|
impcom |
|
| 49 |
48
|
impcom |
|
| 50 |
49
|
adantld |
|
| 51 |
50
|
impcom |
|
| 52 |
28 51
|
jca |
|
| 53 |
52
|
exp41 |
|
| 54 |
53
|
3ad2ant3 |
|
| 55 |
16 54
|
sylbi |
|
| 56 |
55
|
3imp |
|
| 57 |
15 56
|
sylbi |
|
| 58 |
57
|
impcom |
|
| 59 |
13 14 58
|
elrabd |
|
| 60 |
|
elfzolt2 |
|
| 61 |
33
|
ad2antrl |
|
| 62 |
|
ltnle |
|
| 63 |
62
|
biimpd |
|
| 64 |
30 61 63
|
syl2an |
|
| 65 |
64
|
imp |
|
| 66 |
65
|
pm2.21d |
|
| 67 |
60 66
|
sylan2 |
|
| 68 |
59 67
|
embantd |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
com23 |
|
| 71 |
70
|
ex |
|
| 72 |
|
df-nel |
|
| 73 |
|
2a1 |
|
| 74 |
73
|
a1d |
|
| 75 |
72 74
|
sylbir |
|
| 76 |
71 75
|
pm2.61i |
|
| 77 |
76
|
ralimdv2 |
|
| 78 |
77
|
imp |
|
| 79 |
8 10 78
|
jca32 |
|
| 80 |
79
|
exp31 |
|
| 81 |
7 80
|
biimtrid |
|
| 82 |
81
|
impd |
|
| 83 |
82
|
reximdv2 |
|
| 84 |
3 83
|
mpd |
|
| 85 |
84
|
rexlimdv3a |
|
| 86 |
1 85
|
mpd |
|