Metamath Proof Explorer


Theorem prmgaplem6

Description: Lemma for prmgap : for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020)

Ref Expression
Assertion prmgaplem6 NpN<pzN+1..^pz

Proof

Step Hyp Ref Expression
1 prmunb NnN<n
2 eqid q|N<qqn=q|N<qqn
3 2 prmgaplem4 NnN<npq|N<qqnzq|N<qqnpz
4 breq2 q=pN<qN<p
5 breq1 q=pqnpn
6 4 5 anbi12d q=pN<qqnN<ppn
7 6 elrab pq|N<qqnpN<ppn
8 simplrl NnN<npN<ppnzq|N<qqnpzp
9 simprrl NnN<npN<ppnN<p
10 9 adantr NnN<npN<ppnzq|N<qqnpzN<p
11 breq2 q=zN<qN<z
12 breq1 q=zqnzn
13 11 12 anbi12d q=zN<qqnN<zzn
14 simpll zNnN<npN<ppnzN+1..^pz
15 elfzo2 zN+1..^pzN+1pz<p
16 eluz2 zN+1N+1zN+1z
17 nnz NN
18 prmz zz
19 zltp1le NzN<zN+1z
20 17 18 19 syl2an NzN<zN+1z
21 20 exbiri NzN+1zN<z
22 21 3ad2ant1 NnN<nzN+1zN<z
23 22 adantr NnN<npN<ppnzN+1zN<z
24 23 impcom zNnN<npN<ppnN+1zN<z
25 24 com12 N+1zzNnN<npN<ppnN<z
26 25 adantr N+1zpzNnN<npN<ppnN<z
27 26 adantr N+1zpz<pzNnN<npN<ppnN<z
28 27 imp N+1zpz<pzNnN<npN<ppnN<z
29 prmnn zz
30 29 nnred zz
31 30 ad2antrl nzpz
32 prmnn pp
33 32 nnred pp
34 33 adantl zpp
35 34 adantl nzpp
36 prmnn nn
37 36 nnred nn
38 37 adantr nzpn
39 ltleletr zpnz<ppnzn
40 31 35 38 39 syl3anc nzpz<ppnzn
41 40 exp4b nzpz<ppnzn
42 41 3ad2ant2 NnN<nzpz<ppnzn
43 42 expdcom zpNnN<nz<ppnzn
44 43 com45 zpNnN<npnz<pzn
45 44 com14 pnpNnN<nzz<pzn
46 45 adantl N<ppnpNnN<nzz<pzn
47 46 impcom pN<ppnNnN<nzz<pzn
48 47 impcom NnN<npN<ppnzz<pzn
49 48 impcom zNnN<npN<ppnz<pzn
50 49 adantld zNnN<npN<ppnN+1zpz<pzn
51 50 impcom N+1zpz<pzNnN<npN<ppnzn
52 28 51 jca N+1zpz<pzNnN<npN<ppnN<zzn
53 52 exp41 N+1zpz<pzNnN<npN<ppnN<zzn
54 53 3ad2ant3 N+1zN+1zpz<pzNnN<npN<ppnN<zzn
55 16 54 sylbi zN+1pz<pzNnN<npN<ppnN<zzn
56 55 3imp zN+1pz<pzNnN<npN<ppnN<zzn
57 15 56 sylbi zN+1..^pzNnN<npN<ppnN<zzn
58 57 impcom zNnN<npN<ppnzN+1..^pN<zzn
59 13 14 58 elrabd zNnN<npN<ppnzN+1..^pzq|N<qqn
60 elfzolt2 zN+1..^pz<p
61 33 ad2antrl NnN<npN<ppnp
62 ltnle zpz<p¬pz
63 62 biimpd zpz<p¬pz
64 30 61 63 syl2an zNnN<npN<ppnz<p¬pz
65 64 imp zNnN<npN<ppnz<p¬pz
66 65 pm2.21d zNnN<npN<ppnz<ppzz
67 60 66 sylan2 zNnN<npN<ppnzN+1..^ppzz
68 59 67 embantd zNnN<npN<ppnzN+1..^pzq|N<qqnpzz
69 68 ex zNnN<npN<ppnzN+1..^pzq|N<qqnpzz
70 69 com23 zNnN<npN<ppnzq|N<qqnpzzN+1..^pz
71 70 ex zNnN<npN<ppnzq|N<qqnpzzN+1..^pz
72 df-nel z¬z
73 2a1 zzq|N<qqnpzzN+1..^pz
74 73 a1d zNnN<npN<ppnzq|N<qqnpzzN+1..^pz
75 72 74 sylbir ¬zNnN<npN<ppnzq|N<qqnpzzN+1..^pz
76 71 75 pm2.61i NnN<npN<ppnzq|N<qqnpzzN+1..^pz
77 76 ralimdv2 NnN<npN<ppnzq|N<qqnpzzN+1..^pz
78 77 imp NnN<npN<ppnzq|N<qqnpzzN+1..^pz
79 8 10 78 jca32 NnN<npN<ppnzq|N<qqnpzpN<pzN+1..^pz
80 79 exp31 NnN<npN<ppnzq|N<qqnpzpN<pzN+1..^pz
81 7 80 biimtrid NnN<npq|N<qqnzq|N<qqnpzpN<pzN+1..^pz
82 81 impd NnN<npq|N<qqnzq|N<qqnpzpN<pzN+1..^pz
83 82 reximdv2 NnN<npq|N<qqnzq|N<qqnpzpN<pzN+1..^pz
84 3 83 mpd NnN<npN<pzN+1..^pz
85 84 rexlimdv3a NnN<npN<pzN+1..^pz
86 1 85 mpd NpN<pzN+1..^pz