| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resscatc.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
resscatc.d |
⊢ 𝐷 = ( CatCat ‘ 𝑉 ) |
| 3 |
|
resscatc.1 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) |
| 4 |
|
resscatc.2 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 6 |
3 4
|
ssexd |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑉 ∈ V ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( 𝑉 ∩ Cat ) ) |
| 10 |
2 5 6
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
| 12 |
9 11
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( 𝑉 ∩ Cat ) ) |
| 14 |
13 11
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 15 |
2 5 7 8 12 14
|
catchom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑈 ∈ 𝑊 ) |
| 18 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 19 |
|
inass |
⊢ ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ ( 𝑈 ∩ Cat ) ) |
| 20 |
1 16 3
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Cat ) ) |
| 21 |
20
|
ineq2d |
⊢ ( 𝜑 → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( 𝑉 ∩ ( 𝑈 ∩ Cat ) ) ) |
| 22 |
19 21
|
eqtr4id |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) ) |
| 23 |
|
dfss2 |
⊢ ( 𝑉 ⊆ 𝑈 ↔ ( 𝑉 ∩ 𝑈 ) = 𝑉 ) |
| 24 |
4 23
|
sylib |
⊢ ( 𝜑 → ( 𝑉 ∩ 𝑈 ) = 𝑉 ) |
| 25 |
24
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ Cat ) ) |
| 26 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑉 ) = ( 𝐶 ↾s 𝑉 ) |
| 27 |
26 16
|
ressbas |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 28 |
6 27
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 29 |
22 25 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 30 |
26 16
|
ressbasss |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ⊆ ( Base ‘ 𝐶 ) |
| 31 |
29 30
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
| 33 |
32 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 34 |
32 13
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 35 |
1 16 17 18 33 34
|
catchom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 36 |
26 18
|
resshom |
⊢ ( 𝑉 ∈ V → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 38 |
37
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) ) |
| 39 |
15 35 38
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 40 |
39
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 41 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) |
| 42 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) = ( Base ‘ 𝐷 ) ) |
| 43 |
41 8 29 42
|
homfeq |
⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 44 |
40 43
|
mpbird |
⊢ ( 𝜑 → ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ) |
| 45 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑉 ∈ V ) |
| 46 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 47 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( 𝑉 ∩ Cat ) ) |
| 48 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
| 49 |
47 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 50 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( 𝑉 ∩ Cat ) ) |
| 51 |
50 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 52 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( 𝑉 ∩ Cat ) ) |
| 53 |
52 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
| 54 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 55 |
2 5 45 8 49 51
|
catchom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 56 |
54 55
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 Func 𝑦 ) ) |
| 57 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 58 |
2 5 45 8 51 53
|
catchom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) = ( 𝑦 Func 𝑧 ) ) |
| 59 |
57 58
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 Func 𝑧 ) ) |
| 60 |
2 5 45 46 49 51 53 56 59
|
catcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
| 61 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑈 ∈ 𝑊 ) |
| 62 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 63 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
| 64 |
63 47
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 65 |
63 50
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 66 |
63 52
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 67 |
1 16 61 62 64 65 66 56 59
|
catcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
| 68 |
26 62
|
ressco |
⊢ ( 𝑉 ∈ V → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 69 |
6 68
|
syl |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 71 |
70
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) ) |
| 72 |
71
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 73 |
60 67 72
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 74 |
73
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 75 |
74
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑧 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 76 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) |
| 77 |
44
|
eqcomd |
⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 78 |
46 76 8 42 29 77
|
comfeq |
⊢ ( 𝜑 → ( ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ↔ ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑧 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) ) |
| 79 |
75 78
|
mpbird |
⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 80 |
79
|
eqcomd |
⊢ ( 𝜑 → ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) |
| 81 |
44 80
|
jca |
⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ∧ ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) ) |