Step |
Hyp |
Ref |
Expression |
1 |
|
catciso.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
2 |
|
catciso.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
catciso.r |
⊢ 𝑅 = ( Base ‘ 𝑋 ) |
4 |
|
catciso.s |
⊢ 𝑆 = ( Base ‘ 𝑌 ) |
5 |
|
catciso.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
6 |
|
catciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
catciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
catcisolem.i |
⊢ 𝐼 = ( Inv ‘ 𝐶 ) |
9 |
|
catcisolem.g |
⊢ 𝐻 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
10 |
|
catcisolem.1 |
⊢ ( 𝜑 → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
11 |
|
catcisolem.2 |
⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
12 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑅 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑅 ) ) |
14 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
15 |
|
f1of |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → 𝐹 : 𝑅 ⟶ 𝑆 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 : 𝑅 ⟶ 𝑆 ) |
17 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝑢 ∈ 𝑅 ) |
18 |
16 17
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑆 ) |
19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝑣 ∈ 𝑅 ) |
20 |
16 19
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
21 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → 𝑥 = ( 𝐹 ‘ 𝑢 ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → 𝑦 = ( 𝐹 ‘ 𝑣 ) ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) |
25 |
22 24
|
oveq12d |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
26 |
25
|
cnveqd |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
27 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ∈ V |
28 |
27
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ∈ V |
29 |
26 9 28
|
ovmpoa |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
30 |
18 20 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
31 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑢 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
32 |
14 17 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
33 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
34 |
14 19 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
35 |
32 34
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 𝐺 𝑣 ) ) |
36 |
35
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ◡ ( 𝑢 𝐺 𝑣 ) ) |
37 |
30 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( 𝑢 𝐺 𝑣 ) ) |
38 |
37
|
coeq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) |
39 |
|
eqid |
⊢ ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 ) |
40 |
|
eqid |
⊢ ( Hom ‘ 𝑌 ) = ( Hom ‘ 𝑌 ) |
41 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
42 |
3 39 40 41 17 19
|
ffthf1o |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ 𝑣 ) ) ) |
43 |
|
f1ococnv1 |
⊢ ( ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ 𝑣 ) ) → ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
45 |
38 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
46 |
45
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) ) |
47 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑋 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
48 |
|
df-ov |
⊢ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) = ( ( Hom ‘ 𝑋 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
49 |
47 48
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) |
50 |
49
|
reseq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
51 |
50
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) = ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
52 |
46 51
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) ) |
53 |
13 52
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ◡ 𝐹 ∘ 𝐹 ) , ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) 〉 = 〈 ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) 〉 ) |
54 |
|
inss1 |
⊢ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Full 𝑌 ) |
55 |
|
fullfunc |
⊢ ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 ) |
56 |
54 55
|
sstri |
⊢ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Func 𝑌 ) |
57 |
56
|
ssbri |
⊢ ( 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
58 |
10 57
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
59 |
|
eqid |
⊢ ( Id ‘ 𝑌 ) = ( Id ‘ 𝑌 ) |
60 |
|
eqid |
⊢ ( Id ‘ 𝑋 ) = ( Id ‘ 𝑋 ) |
61 |
|
eqid |
⊢ ( comp ‘ 𝑌 ) = ( comp ‘ 𝑌 ) |
62 |
|
eqid |
⊢ ( comp ‘ 𝑋 ) = ( comp ‘ 𝑋 ) |
63 |
1 2 5
|
catcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
64 |
|
inss2 |
⊢ ( 𝑈 ∩ Cat ) ⊆ Cat |
65 |
63 64
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ Cat ) |
66 |
65 7
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ Cat ) |
67 |
65 6
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
68 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑅 ) |
69 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑅 → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
70 |
11 68 69
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
71 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ V |
72 |
71
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ V |
73 |
9 72
|
fnmpoi |
⊢ 𝐻 Fn ( 𝑆 × 𝑆 ) |
74 |
73
|
a1i |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
75 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
76 |
70
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
77 |
76
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
78 |
70
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
79 |
78
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
80 |
3 39 40 75 77 79
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
81 |
|
f1ocnv |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
82 |
|
f1of |
⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
83 |
80 81 82
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
84 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) |
85 |
84
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
86 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
87 |
86
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑣 ) ) |
88 |
85 87
|
oveq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
89 |
88
|
cnveqd |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
90 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∈ V |
91 |
90
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∈ V |
92 |
89 9 91
|
ovmpoa |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
94 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
95 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
96 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
97 |
94 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
98 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑣 ∈ 𝑆 ) |
99 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
100 |
94 98 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
101 |
97 100
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
103 |
93 102
|
feq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ↔ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
104 |
83 103
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
105 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝑆 ) |
106 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑥 = 𝑢 ) |
107 |
106
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
108 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑦 = 𝑢 ) |
109 |
108
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
110 |
107 109
|
oveq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
111 |
110
|
cnveqd |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
112 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ V |
113 |
112
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ V |
114 |
111 9 113
|
ovmpoa |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
115 |
105 105 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
116 |
115
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) ) |
117 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
118 |
3 60 59 117 76
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
119 |
11 96
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
120 |
119
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) |
121 |
118 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) |
122 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
123 |
3 39 40 122 76 76
|
ffthf1o |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
124 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑋 ∈ Cat ) |
125 |
3 39 60 124 76
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
126 |
|
f1ocnvfv |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ∧ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
127 |
123 125 126
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
128 |
121 127
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
129 |
116 128
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
130 |
58
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
131 |
70
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
132 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑢 ∈ 𝑆 ) |
133 |
131 132
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
134 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑣 ∈ 𝑆 ) |
135 |
131 134
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
136 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑧 ∈ 𝑆 ) |
137 |
131 136
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑅 ) |
138 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
139 |
3 39 40 138 133 135
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
140 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
141 |
140 132 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
142 |
140 134 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
143 |
141 142
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
144 |
143
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
145 |
139 144
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
146 |
|
f1ocnv |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
147 |
|
f1of |
⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
148 |
145 146 147
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
149 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
150 |
148 149
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
151 |
3 39 40 138 135 137
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
152 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
153 |
140 136 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
154 |
142 153
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
155 |
154
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) |
156 |
151 155
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
157 |
|
f1ocnv |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
158 |
|
f1of |
⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
159 |
156 157 158
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
160 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
161 |
159 160
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ∈ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
162 |
3 39 62 61 130 133 135 137 150 161
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
163 |
141 142
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 = 〈 𝑢 , 𝑣 〉 ) |
164 |
163 153
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) ) |
165 |
|
f1ocnvfv2 |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 ) |
166 |
156 160 165
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 ) |
167 |
|
f1ocnvfv2 |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 ) |
168 |
145 149 167
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 ) |
169 |
164 166 168
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) |
170 |
162 169
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) |
171 |
3 39 40 138 133 137
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
172 |
141 153
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
173 |
172
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) |
174 |
171 173
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
175 |
67
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑋 ∈ Cat ) |
176 |
3 39 62 175 133 135 137 150 161
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
177 |
|
f1ocnvfv |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
178 |
174 176 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
179 |
170 178
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) |
180 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑢 ) |
181 |
180
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
182 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
183 |
182
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
184 |
181 183
|
oveq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
185 |
184
|
cnveqd |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
186 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
187 |
186
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
188 |
185 9 187
|
ovmpoa |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
189 |
132 136 188
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
190 |
189
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) ) |
191 |
|
simpl |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑣 ) |
192 |
191
|
fveq2d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑣 ) ) |
193 |
|
simpr |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
194 |
193
|
fveq2d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
195 |
192 194
|
oveq12d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
196 |
195
|
cnveqd |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
197 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
198 |
197
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
199 |
196 9 198
|
ovmpoa |
⊢ ( ( 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑣 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
200 |
134 136 199
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑣 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
201 |
200
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) |
202 |
132 134 92
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
203 |
202
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) |
204 |
201 203
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) |
205 |
179 190 204
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) ) |
206 |
4 3 40 39 59 60 61 62 66 67 70 74 104 129 205
|
isfuncd |
⊢ ( 𝜑 → ◡ 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ) |
207 |
3 58 206
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( ◡ 𝐹 ∘ 𝐹 ) , ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) 〉 ) |
208 |
|
eqid |
⊢ ( idfunc ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) |
209 |
208 3 67 39
|
idfuval |
⊢ ( 𝜑 → ( idfunc ‘ 𝑋 ) = 〈 ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) 〉 ) |
210 |
53 207 209
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = ( idfunc ‘ 𝑋 ) ) |
211 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
212 |
|
df-br |
⊢ ( 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 Func 𝑌 ) ) |
213 |
58 212
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 Func 𝑌 ) ) |
214 |
|
df-br |
⊢ ( ◡ 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ↔ 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 Func 𝑋 ) ) |
215 |
206 214
|
sylib |
⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 Func 𝑋 ) ) |
216 |
1 2 5 211 6 7 6 213 215
|
catcco |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) |
217 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
218 |
1 2 217 208 5 6
|
catcid |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) ) |
219 |
210 216 218
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
220 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
221 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
222 |
1
|
catccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
223 |
5 222
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
224 |
1 2 5 220 6 7
|
catchom |
⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 Func 𝑌 ) ) |
225 |
213 224
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
226 |
1 2 5 220 7 6
|
catchom |
⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 Func 𝑋 ) ) |
227 |
215 226
|
eleqtrrd |
⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
228 |
2 220 211 217 221 223 6 7 225 227
|
issect2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ↔ ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
229 |
219 228
|
mpbird |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |
230 |
|
f1ococnv2 |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑆 ) ) |
231 |
11 230
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑆 ) ) |
232 |
92
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
233 |
232
|
coeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
234 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
235 |
76
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
236 |
78
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
237 |
3 39 40 234 235 236
|
ffthf1o |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
238 |
101
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
239 |
238
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
240 |
237 239
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
241 |
|
f1ococnv2 |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
242 |
240 241
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
243 |
233 242
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
244 |
243
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) ) |
245 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑌 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
246 |
|
df-ov |
⊢ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( Hom ‘ 𝑌 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
247 |
245 246
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
248 |
247
|
reseq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
249 |
248
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) = ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
250 |
244 249
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) ) |
251 |
231 250
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 𝐹 ∘ ◡ 𝐹 ) , ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) 〉 = 〈 ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) 〉 ) |
252 |
4 206 58
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) = 〈 ( 𝐹 ∘ ◡ 𝐹 ) , ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) 〉 ) |
253 |
|
eqid |
⊢ ( idfunc ‘ 𝑌 ) = ( idfunc ‘ 𝑌 ) |
254 |
253 4 66 40
|
idfuval |
⊢ ( 𝜑 → ( idfunc ‘ 𝑌 ) = 〈 ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) 〉 ) |
255 |
251 252 254
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) = ( idfunc ‘ 𝑌 ) ) |
256 |
1 2 5 211 7 6 7 215 213
|
catcco |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) ) |
257 |
1 2 217 253 5 7
|
catcid |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( idfunc ‘ 𝑌 ) ) |
258 |
255 256 257
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
259 |
2 220 211 217 221 223 7 6 227 225
|
issect2 |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ↔ ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
260 |
258 259
|
mpbird |
⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) |
261 |
2 8 223 6 7 221
|
isinv |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ↔ ( 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ∧ 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) ) ) |
262 |
229 260 261
|
mpbir2and |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |