Metamath Proof Explorer


Theorem catcisolem

Description: Lemma for catciso . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses catciso.c 𝐶 = ( CatCat ‘ 𝑈 )
catciso.b 𝐵 = ( Base ‘ 𝐶 )
catciso.r 𝑅 = ( Base ‘ 𝑋 )
catciso.s 𝑆 = ( Base ‘ 𝑌 )
catciso.u ( 𝜑𝑈𝑉 )
catciso.x ( 𝜑𝑋𝐵 )
catciso.y ( 𝜑𝑌𝐵 )
catcisolem.i 𝐼 = ( Inv ‘ 𝐶 )
catcisolem.g 𝐻 = ( 𝑥𝑆 , 𝑦𝑆 ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) )
catcisolem.1 ( 𝜑𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
catcisolem.2 ( 𝜑𝐹 : 𝑅1-1-onto𝑆 )
Assertion catcisolem ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ( 𝑋 𝐼 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ )

Proof

Step Hyp Ref Expression
1 catciso.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catciso.b 𝐵 = ( Base ‘ 𝐶 )
3 catciso.r 𝑅 = ( Base ‘ 𝑋 )
4 catciso.s 𝑆 = ( Base ‘ 𝑌 )
5 catciso.u ( 𝜑𝑈𝑉 )
6 catciso.x ( 𝜑𝑋𝐵 )
7 catciso.y ( 𝜑𝑌𝐵 )
8 catcisolem.i 𝐼 = ( Inv ‘ 𝐶 )
9 catcisolem.g 𝐻 = ( 𝑥𝑆 , 𝑦𝑆 ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) )
10 catcisolem.1 ( 𝜑𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
11 catcisolem.2 ( 𝜑𝐹 : 𝑅1-1-onto𝑆 )
12 f1ococnv1 ( 𝐹 : 𝑅1-1-onto𝑆 → ( 𝐹𝐹 ) = ( I ↾ 𝑅 ) )
13 11 12 syl ( 𝜑 → ( 𝐹𝐹 ) = ( I ↾ 𝑅 ) )
14 11 3ad2ant1 ( ( 𝜑𝑢𝑅𝑣𝑅 ) → 𝐹 : 𝑅1-1-onto𝑆 )
15 f1of ( 𝐹 : 𝑅1-1-onto𝑆𝐹 : 𝑅𝑆 )
16 14 15 syl ( ( 𝜑𝑢𝑅𝑣𝑅 ) → 𝐹 : 𝑅𝑆 )
17 simp2 ( ( 𝜑𝑢𝑅𝑣𝑅 ) → 𝑢𝑅 )
18 16 17 ffvelrnd ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( 𝐹𝑢 ) ∈ 𝑆 )
19 simp3 ( ( 𝜑𝑢𝑅𝑣𝑅 ) → 𝑣𝑅 )
20 16 19 ffvelrnd ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( 𝐹𝑣 ) ∈ 𝑆 )
21 simpl ( ( 𝑥 = ( 𝐹𝑢 ) ∧ 𝑦 = ( 𝐹𝑣 ) ) → 𝑥 = ( 𝐹𝑢 ) )
22 21 fveq2d ( ( 𝑥 = ( 𝐹𝑢 ) ∧ 𝑦 = ( 𝐹𝑣 ) ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝐹𝑢 ) ) )
23 simpr ( ( 𝑥 = ( 𝐹𝑢 ) ∧ 𝑦 = ( 𝐹𝑣 ) ) → 𝑦 = ( 𝐹𝑣 ) )
24 23 fveq2d ( ( 𝑥 = ( 𝐹𝑢 ) ∧ 𝑦 = ( 𝐹𝑣 ) ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐹𝑣 ) ) )
25 22 24 oveq12d ( ( 𝑥 = ( 𝐹𝑢 ) ∧ 𝑦 = ( 𝐹𝑣 ) ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
26 25 cnveqd ( ( 𝑥 = ( 𝐹𝑢 ) ∧ 𝑦 = ( 𝐹𝑣 ) ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
27 ovex ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ∈ V
28 27 cnvex ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ∈ V
29 26 9 28 ovmpoa ( ( ( 𝐹𝑢 ) ∈ 𝑆 ∧ ( 𝐹𝑣 ) ∈ 𝑆 ) → ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
30 18 20 29 syl2anc ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
31 f1ocnvfv1 ( ( 𝐹 : 𝑅1-1-onto𝑆𝑢𝑅 ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
32 14 17 31 syl2anc ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
33 f1ocnvfv1 ( ( 𝐹 : 𝑅1-1-onto𝑆𝑣𝑅 ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
34 14 19 33 syl2anc ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
35 32 34 oveq12d ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 𝐺 𝑣 ) )
36 35 cnveqd ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) 𝐺 ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 𝐺 𝑣 ) )
37 30 36 eqtrd ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) = ( 𝑢 𝐺 𝑣 ) )
38 37 coeq1d ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) )
39 eqid ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 )
40 eqid ( Hom ‘ 𝑌 ) = ( Hom ‘ 𝑌 )
41 10 3ad2ant1 ( ( 𝜑𝑢𝑅𝑣𝑅 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
42 3 39 40 41 17 19 ffthf1o ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹𝑣 ) ) )
43 f1ococnv1 ( ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹𝑣 ) ) → ( ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) )
44 42 43 syl ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) )
45 38 44 eqtrd ( ( 𝜑𝑢𝑅𝑣𝑅 ) → ( ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) )
46 45 mpoeq3dva ( 𝜑 → ( 𝑢𝑅 , 𝑣𝑅 ↦ ( ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑢𝑅 , 𝑣𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) )
47 fveq2 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑋 ) ‘ ⟨ 𝑢 , 𝑣 ⟩ ) )
48 df-ov ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) = ( ( Hom ‘ 𝑋 ) ‘ ⟨ 𝑢 , 𝑣 ⟩ )
49 47 48 eqtr4di ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) )
50 49 reseq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) )
51 50 mpompt ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) = ( 𝑢𝑅 , 𝑣𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) )
52 46 51 eqtr4di ( 𝜑 → ( 𝑢𝑅 , 𝑣𝑅 ↦ ( ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) )
53 13 52 opeq12d ( 𝜑 → ⟨ ( 𝐹𝐹 ) , ( 𝑢𝑅 , 𝑣𝑅 ↦ ( ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) ⟩ = ⟨ ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) ⟩ )
54 inss1 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Full 𝑌 )
55 fullfunc ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 )
56 54 55 sstri ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Func 𝑌 )
57 56 ssbri ( 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺𝐹 ( 𝑋 Func 𝑌 ) 𝐺 )
58 10 57 syl ( 𝜑𝐹 ( 𝑋 Func 𝑌 ) 𝐺 )
59 eqid ( Id ‘ 𝑌 ) = ( Id ‘ 𝑌 )
60 eqid ( Id ‘ 𝑋 ) = ( Id ‘ 𝑋 )
61 eqid ( comp ‘ 𝑌 ) = ( comp ‘ 𝑌 )
62 eqid ( comp ‘ 𝑋 ) = ( comp ‘ 𝑋 )
63 1 2 5 catcbas ( 𝜑𝐵 = ( 𝑈 ∩ Cat ) )
64 inss2 ( 𝑈 ∩ Cat ) ⊆ Cat
65 63 64 eqsstrdi ( 𝜑𝐵 ⊆ Cat )
66 65 7 sseldd ( 𝜑𝑌 ∈ Cat )
67 65 6 sseldd ( 𝜑𝑋 ∈ Cat )
68 f1ocnv ( 𝐹 : 𝑅1-1-onto𝑆 𝐹 : 𝑆1-1-onto𝑅 )
69 f1of ( 𝐹 : 𝑆1-1-onto𝑅 𝐹 : 𝑆𝑅 )
70 11 68 69 3syl ( 𝜑 𝐹 : 𝑆𝑅 )
71 ovex ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) ∈ V
72 71 cnvex ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) ∈ V
73 9 72 fnmpoi 𝐻 Fn ( 𝑆 × 𝑆 )
74 73 a1i ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
75 10 adantr ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
76 70 ffvelrnda ( ( 𝜑𝑢𝑆 ) → ( 𝐹𝑢 ) ∈ 𝑅 )
77 76 adantrr ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝐹𝑢 ) ∈ 𝑅 )
78 70 ffvelrnda ( ( 𝜑𝑣𝑆 ) → ( 𝐹𝑣 ) ∈ 𝑅 )
79 78 adantrl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝐹𝑣 ) ∈ 𝑅 )
80 3 39 40 75 77 79 ffthf1o ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
81 f1ocnv ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) –1-1-onto→ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
82 f1of ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) –1-1-onto→ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
83 80 81 82 3syl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
84 simpl ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → 𝑥 = 𝑢 )
85 84 fveq2d ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( 𝐹𝑥 ) = ( 𝐹𝑢 ) )
86 simpr ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → 𝑦 = 𝑣 )
87 86 fveq2d ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( 𝐹𝑦 ) = ( 𝐹𝑣 ) )
88 85 87 oveq12d ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) )
89 88 cnveqd ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) )
90 ovex ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∈ V
91 90 cnvex ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∈ V
92 89 9 91 ovmpoa ( ( 𝑢𝑆𝑣𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) )
93 92 adantl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) )
94 11 adantr ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → 𝐹 : 𝑅1-1-onto𝑆 )
95 simprl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → 𝑢𝑆 )
96 f1ocnvfv2 ( ( 𝐹 : 𝑅1-1-onto𝑆𝑢𝑆 ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
97 94 95 96 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
98 simprr ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → 𝑣𝑆 )
99 f1ocnvfv2 ( ( 𝐹 : 𝑅1-1-onto𝑆𝑣𝑆 ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
100 94 98 99 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
101 97 100 oveq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
102 101 eqcomd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
103 93 102 feq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) ↔ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) ) )
104 83 103 mpbird ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
105 simpr ( ( 𝜑𝑢𝑆 ) → 𝑢𝑆 )
106 simpl ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → 𝑥 = 𝑢 )
107 106 fveq2d ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → ( 𝐹𝑥 ) = ( 𝐹𝑢 ) )
108 simpr ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → 𝑦 = 𝑢 )
109 108 fveq2d ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → ( 𝐹𝑦 ) = ( 𝐹𝑢 ) )
110 107 109 oveq12d ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) )
111 110 cnveqd ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) )
112 ovex ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ∈ V
113 112 cnvex ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ∈ V
114 111 9 113 ovmpoa ( ( 𝑢𝑆𝑢𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) )
115 105 105 114 syl2anc ( ( 𝜑𝑢𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) )
116 115 fveq1d ( ( 𝜑𝑢𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) )
117 58 adantr ( ( 𝜑𝑢𝑆 ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 )
118 3 60 59 117 76 funcid ( ( 𝜑𝑢𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( 𝐹𝑢 ) ) ) )
119 11 96 sylan ( ( 𝜑𝑢𝑆 ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
120 119 fveq2d ( ( 𝜑𝑢𝑆 ) → ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( 𝐹𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) )
121 118 120 eqtrd ( ( 𝜑𝑢𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) )
122 10 adantr ( ( 𝜑𝑢𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
123 3 39 40 122 76 76 ffthf1o ( ( 𝜑𝑢𝑆 ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑢 ) ) ) )
124 67 adantr ( ( 𝜑𝑢𝑆 ) → 𝑋 ∈ Cat )
125 3 39 60 124 76 catidcl ( ( 𝜑𝑢𝑆 ) → ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ∈ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑢 ) ) )
126 f1ocnvfv ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑢 ) ) ) ∧ ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ∈ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑢 ) ) ) → ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ) )
127 123 125 126 syl2anc ( ( 𝜑𝑢𝑆 ) → ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) ) )
128 121 127 mpd ( ( 𝜑𝑢𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) )
129 116 128 eqtrd ( ( 𝜑𝑢𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( 𝐹𝑢 ) ) )
130 58 3ad2ant1 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 )
131 70 3ad2ant1 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 : 𝑆𝑅 )
132 simp21 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑢𝑆 )
133 131 132 ffvelrnd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹𝑢 ) ∈ 𝑅 )
134 simp22 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑣𝑆 )
135 131 134 ffvelrnd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹𝑣 ) ∈ 𝑅 )
136 simp23 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑧𝑆 )
137 131 136 ffvelrnd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹𝑧 ) ∈ 𝑅 )
138 10 3ad2ant1 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
139 3 39 40 138 133 135 ffthf1o ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
140 11 3ad2ant1 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 : 𝑅1-1-onto𝑆 )
141 140 132 96 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( 𝐹𝑢 ) ) = 𝑢 )
142 140 134 99 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( 𝐹𝑣 ) ) = 𝑣 )
143 141 142 oveq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
144 143 f1oeq3d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ↔ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
145 139 144 mpbid ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
146 f1ocnv ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
147 f1of ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
148 145 146 147 3syl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
149 simp3l ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
150 148 149 ffvelrnd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ∈ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) )
151 3 39 40 138 135 137 ffthf1o ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) )
152 f1ocnvfv2 ( ( 𝐹 : 𝑅1-1-onto𝑆𝑧𝑆 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = 𝑧 )
153 140 136 152 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = 𝑧 )
154 142 153 oveq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( 𝐹𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) = ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) )
155 154 f1oeq3d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) ↔ ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) )
156 151 155 mpbid ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) )
157 f1ocnv ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) → ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) )
158 f1of ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) → ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) )
159 156 157 158 3syl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) )
160 simp3r ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) )
161 159 160 ffvelrnd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ∈ ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) )
162 3 39 62 61 130 133 135 137 150 161 funcco ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) = ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ) ( ⟨ ( 𝐹 ‘ ( 𝐹𝑢 ) ) , ( 𝐹 ‘ ( 𝐹𝑣 ) ) ⟩ ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) )
163 141 142 opeq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ⟨ ( 𝐹 ‘ ( 𝐹𝑢 ) ) , ( 𝐹 ‘ ( 𝐹𝑣 ) ) ⟩ = ⟨ 𝑢 , 𝑣 ⟩ )
164 163 153 oveq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ⟨ ( 𝐹 ‘ ( 𝐹𝑢 ) ) , ( 𝐹 ‘ ( 𝐹𝑣 ) ) ⟩ ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) = ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) )
165 f1ocnvfv2 ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑣 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) → ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 )
166 156 160 165 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 )
167 f1ocnvfv2 ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 )
168 145 149 167 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 )
169 164 166 168 oveq123d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ) ( ⟨ ( 𝐹 ‘ ( 𝐹𝑢 ) ) , ( 𝐹 ‘ ( 𝐹𝑣 ) ) ⟩ ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) )
170 162 169 eqtrd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) )
171 3 39 40 138 133 137 ffthf1o ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) )
172 141 153 oveq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) )
173 172 f1oeq3d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) ↔ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) )
174 171 173 mpbid ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) )
175 67 3ad2ant1 ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑋 ∈ Cat )
176 3 39 62 175 133 135 137 150 161 catcocl ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) )
177 f1ocnvfv ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑧 ) ) ) → ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) )
178 174 176 177 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) ) )
179 170 178 mpd ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) )
180 simpl ( ( 𝑥 = 𝑢𝑦 = 𝑧 ) → 𝑥 = 𝑢 )
181 180 fveq2d ( ( 𝑥 = 𝑢𝑦 = 𝑧 ) → ( 𝐹𝑥 ) = ( 𝐹𝑢 ) )
182 simpr ( ( 𝑥 = 𝑢𝑦 = 𝑧 ) → 𝑦 = 𝑧 )
183 182 fveq2d ( ( 𝑥 = 𝑢𝑦 = 𝑧 ) → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
184 181 183 oveq12d ( ( 𝑥 = 𝑢𝑦 = 𝑧 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) )
185 184 cnveqd ( ( 𝑥 = 𝑢𝑦 = 𝑧 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) )
186 ovex ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ∈ V
187 186 cnvex ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ∈ V
188 185 9 187 ovmpoa ( ( 𝑢𝑆𝑧𝑆 ) → ( 𝑢 𝐻 𝑧 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) )
189 132 136 188 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑧 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) )
190 189 fveq1d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) )
191 simpl ( ( 𝑥 = 𝑣𝑦 = 𝑧 ) → 𝑥 = 𝑣 )
192 191 fveq2d ( ( 𝑥 = 𝑣𝑦 = 𝑧 ) → ( 𝐹𝑥 ) = ( 𝐹𝑣 ) )
193 simpr ( ( 𝑥 = 𝑣𝑦 = 𝑧 ) → 𝑦 = 𝑧 )
194 193 fveq2d ( ( 𝑥 = 𝑣𝑦 = 𝑧 ) → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
195 192 194 oveq12d ( ( 𝑥 = 𝑣𝑦 = 𝑧 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) )
196 195 cnveqd ( ( 𝑥 = 𝑣𝑦 = 𝑧 ) → ( ( 𝐹𝑥 ) 𝐺 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) )
197 ovex ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ∈ V
198 197 cnvex ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ∈ V
199 196 9 198 ovmpoa ( ( 𝑣𝑆𝑧𝑆 ) → ( 𝑣 𝐻 𝑧 ) = ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) )
200 134 136 199 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑣 𝐻 𝑧 ) = ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) )
201 200 fveq1d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) = ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) )
202 132 134 92 syl2anc ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑣 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) )
203 202 fveq1d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) = ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) )
204 201 203 oveq12d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) = ( ( ( ( 𝐹𝑣 ) 𝐺 ( 𝐹𝑧 ) ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ‘ 𝑓 ) ) )
205 179 190 204 3eqtr4d ( ( 𝜑 ∧ ( 𝑢𝑆𝑣𝑆𝑧𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑢 , 𝑣 ⟩ ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑢 ) , ( 𝐹𝑣 ) ⟩ ( comp ‘ 𝑋 ) ( 𝐹𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) )
206 4 3 40 39 59 60 61 62 66 67 70 74 104 129 205 isfuncd ( 𝜑 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 )
207 3 58 206 cofuval2 ( 𝜑 → ( ⟨ 𝐹 , 𝐻 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝐹𝐹 ) , ( 𝑢𝑅 , 𝑣𝑅 ↦ ( ( ( 𝐹𝑢 ) 𝐻 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) ⟩ )
208 eqid ( idfunc𝑋 ) = ( idfunc𝑋 )
209 208 3 67 39 idfuval ( 𝜑 → ( idfunc𝑋 ) = ⟨ ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) ⟩ )
210 53 207 209 3eqtr4d ( 𝜑 → ( ⟨ 𝐹 , 𝐻 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = ( idfunc𝑋 ) )
211 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
212 df-br ( 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝑋 Func 𝑌 ) )
213 58 212 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝑋 Func 𝑌 ) )
214 df-br ( 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ↔ ⟨ 𝐹 , 𝐻 ⟩ ∈ ( 𝑌 Func 𝑋 ) )
215 206 214 sylib ( 𝜑 → ⟨ 𝐹 , 𝐻 ⟩ ∈ ( 𝑌 Func 𝑋 ) )
216 1 2 5 211 6 7 6 213 215 catcco ( 𝜑 → ( ⟨ 𝐹 , 𝐻 ⟩ ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ⟨ 𝐹 , 𝐺 ⟩ ) = ( ⟨ 𝐹 , 𝐻 ⟩ ∘func𝐹 , 𝐺 ⟩ ) )
217 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
218 1 2 217 208 5 6 catcid ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( idfunc𝑋 ) )
219 210 216 218 3eqtr4d ( 𝜑 → ( ⟨ 𝐹 , 𝐻 ⟩ ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ⟨ 𝐹 , 𝐺 ⟩ ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
220 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
221 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
222 1 catccat ( 𝑈𝑉𝐶 ∈ Cat )
223 5 222 syl ( 𝜑𝐶 ∈ Cat )
224 1 2 5 220 6 7 catchom ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 Func 𝑌 ) )
225 213 224 eleqtrrd ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
226 1 2 5 220 7 6 catchom ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 Func 𝑋 ) )
227 215 226 eleqtrrd ( 𝜑 → ⟨ 𝐹 , 𝐻 ⟩ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) )
228 2 220 211 217 221 223 6 7 225 227 issect2 ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ ↔ ( ⟨ 𝐹 , 𝐻 ⟩ ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ⟨ 𝐹 , 𝐺 ⟩ ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) )
229 219 228 mpbird ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ )
230 f1ococnv2 ( 𝐹 : 𝑅1-1-onto𝑆 → ( 𝐹 𝐹 ) = ( I ↾ 𝑆 ) )
231 11 230 syl ( 𝜑 → ( 𝐹 𝐹 ) = ( I ↾ 𝑆 ) )
232 92 3adant1 ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) )
233 232 coeq2d ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ) )
234 10 3ad2ant1 ( ( 𝜑𝑢𝑆𝑣𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 )
235 76 3adant3 ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( 𝐹𝑢 ) ∈ 𝑅 )
236 78 3adant2 ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( 𝐹𝑣 ) ∈ 𝑅 )
237 3 39 40 234 235 236 ffthf1o ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) )
238 101 3impb ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
239 238 f1oeq3d ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( 𝐹𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( 𝐹𝑣 ) ) ) ↔ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
240 237 239 mpbid ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
241 f1ococnv2 ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) : ( ( 𝐹𝑢 ) ( Hom ‘ 𝑋 ) ( 𝐹𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
242 240 241 syl ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
243 233 242 eqtrd ( ( 𝜑𝑢𝑆𝑣𝑆 ) → ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
244 243 mpoeq3dva ( 𝜑 → ( 𝑢𝑆 , 𝑣𝑆 ↦ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑢𝑆 , 𝑣𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) )
245 fveq2 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑌 ) ‘ ⟨ 𝑢 , 𝑣 ⟩ ) )
246 df-ov ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( Hom ‘ 𝑌 ) ‘ ⟨ 𝑢 , 𝑣 ⟩ )
247 245 246 eqtr4di ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) )
248 247 reseq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
249 248 mpompt ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) = ( 𝑢𝑆 , 𝑣𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) )
250 244 249 eqtr4di ( 𝜑 → ( 𝑢𝑆 , 𝑣𝑆 ↦ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) )
251 231 250 opeq12d ( 𝜑 → ⟨ ( 𝐹 𝐹 ) , ( 𝑢𝑆 , 𝑣𝑆 ↦ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) ⟩ = ⟨ ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) ⟩ )
252 4 206 58 cofuval2 ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ∘func 𝐹 , 𝐻 ⟩ ) = ⟨ ( 𝐹 𝐹 ) , ( 𝑢𝑆 , 𝑣𝑆 ↦ ( ( ( 𝐹𝑢 ) 𝐺 ( 𝐹𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) ⟩ )
253 eqid ( idfunc𝑌 ) = ( idfunc𝑌 )
254 253 4 66 40 idfuval ( 𝜑 → ( idfunc𝑌 ) = ⟨ ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) ⟩ )
255 251 252 254 3eqtr4d ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ∘func 𝐹 , 𝐻 ⟩ ) = ( idfunc𝑌 ) )
256 1 2 5 211 7 6 7 215 213 catcco ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ ) = ( ⟨ 𝐹 , 𝐺 ⟩ ∘func 𝐹 , 𝐻 ⟩ ) )
257 1 2 217 253 5 7 catcid ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( idfunc𝑌 ) )
258 255 256 257 3eqtr4d ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) )
259 2 220 211 217 221 223 7 6 227 225 issect2 ( 𝜑 → ( ⟨ 𝐹 , 𝐻 ⟩ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⟨ 𝐹 , 𝐺 ⟩ ↔ ( ⟨ 𝐹 , 𝐺 ⟩ ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) )
260 258 259 mpbird ( 𝜑 → ⟨ 𝐹 , 𝐻 ⟩ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⟨ 𝐹 , 𝐺 ⟩ )
261 2 8 223 6 7 221 isinv ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑋 𝐼 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ ↔ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ ∧ ⟨ 𝐹 , 𝐻 ⟩ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⟨ 𝐹 , 𝐺 ⟩ ) ) )
262 229 260 261 mpbir2and ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ( 𝑋 𝐼 𝑌 ) ⟨ 𝐹 , 𝐻 ⟩ )