| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catciso.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catciso.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
catciso.r |
⊢ 𝑅 = ( Base ‘ 𝑋 ) |
| 4 |
|
catciso.s |
⊢ 𝑆 = ( Base ‘ 𝑌 ) |
| 5 |
|
catciso.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 6 |
|
catciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
catciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
catcisolem.i |
⊢ 𝐼 = ( Inv ‘ 𝐶 ) |
| 9 |
|
catcisolem.g |
⊢ 𝐻 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
|
catcisolem.1 |
⊢ ( 𝜑 → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 11 |
|
catcisolem.2 |
⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 12 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑅 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑅 ) ) |
| 14 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 15 |
|
f1of |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → 𝐹 : 𝑅 ⟶ 𝑆 ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 : 𝑅 ⟶ 𝑆 ) |
| 17 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝑢 ∈ 𝑅 ) |
| 18 |
16 17
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑆 ) |
| 19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝑣 ∈ 𝑅 ) |
| 20 |
16 19
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
| 21 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → 𝑥 = ( 𝐹 ‘ 𝑢 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → 𝑦 = ( 𝐹 ‘ 𝑣 ) ) |
| 24 |
23
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 25 |
22 24
|
oveq12d |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 26 |
25
|
cnveqd |
⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 27 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ∈ V |
| 28 |
27
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ∈ V |
| 29 |
26 9 28
|
ovmpoa |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 30 |
18 20 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 31 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑢 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 32 |
14 17 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 33 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 34 |
14 19 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 35 |
32 34
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 𝐺 𝑣 ) ) |
| 36 |
35
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ◡ ( 𝑢 𝐺 𝑣 ) ) |
| 37 |
30 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( 𝑢 𝐺 𝑣 ) ) |
| 38 |
37
|
coeq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) |
| 39 |
|
eqid |
⊢ ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 ) |
| 40 |
|
eqid |
⊢ ( Hom ‘ 𝑌 ) = ( Hom ‘ 𝑌 ) |
| 41 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 42 |
3 39 40 41 17 19
|
ffthf1o |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 43 |
|
f1ococnv1 |
⊢ ( ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ 𝑣 ) ) → ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 45 |
38 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 46 |
45
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑋 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 48 |
|
df-ov |
⊢ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) = ( ( Hom ‘ 𝑋 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 49 |
47 48
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) |
| 50 |
49
|
reseq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 51 |
50
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) = ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 52 |
46 51
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) ) |
| 53 |
13 52
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ◡ 𝐹 ∘ 𝐹 ) , ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) 〉 = 〈 ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) 〉 ) |
| 54 |
|
inss1 |
⊢ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Full 𝑌 ) |
| 55 |
|
fullfunc |
⊢ ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 ) |
| 56 |
54 55
|
sstri |
⊢ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Func 𝑌 ) |
| 57 |
56
|
ssbri |
⊢ ( 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 58 |
10 57
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 59 |
|
eqid |
⊢ ( Id ‘ 𝑌 ) = ( Id ‘ 𝑌 ) |
| 60 |
|
eqid |
⊢ ( Id ‘ 𝑋 ) = ( Id ‘ 𝑋 ) |
| 61 |
|
eqid |
⊢ ( comp ‘ 𝑌 ) = ( comp ‘ 𝑌 ) |
| 62 |
|
eqid |
⊢ ( comp ‘ 𝑋 ) = ( comp ‘ 𝑋 ) |
| 63 |
1 2 5
|
catcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 64 |
|
inss2 |
⊢ ( 𝑈 ∩ Cat ) ⊆ Cat |
| 65 |
63 64
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ Cat ) |
| 66 |
65 7
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ Cat ) |
| 67 |
65 6
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
| 68 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑅 ) |
| 69 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑅 → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
| 70 |
11 68 69
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
| 71 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ V |
| 72 |
71
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ V |
| 73 |
9 72
|
fnmpoi |
⊢ 𝐻 Fn ( 𝑆 × 𝑆 ) |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 75 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 76 |
70
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 77 |
76
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 78 |
70
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 79 |
78
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 80 |
3 39 40 75 77 79
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 81 |
|
f1ocnv |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 82 |
|
f1of |
⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 83 |
80 81 82
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 84 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) |
| 85 |
84
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 86 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
| 87 |
86
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑣 ) ) |
| 88 |
85 87
|
oveq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 89 |
88
|
cnveqd |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 90 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∈ V |
| 91 |
90
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∈ V |
| 92 |
89 9 91
|
ovmpoa |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 94 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 95 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
| 96 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 97 |
94 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 98 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑣 ∈ 𝑆 ) |
| 99 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 100 |
94 98 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 101 |
97 100
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 103 |
93 102
|
feq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ↔ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 104 |
83 103
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 105 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝑆 ) |
| 106 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑥 = 𝑢 ) |
| 107 |
106
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 108 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑦 = 𝑢 ) |
| 109 |
108
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 110 |
107 109
|
oveq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 111 |
110
|
cnveqd |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 112 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ V |
| 113 |
112
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ V |
| 114 |
111 9 113
|
ovmpoa |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 115 |
105 105 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 116 |
115
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) ) |
| 117 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 118 |
3 60 59 117 76
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 119 |
11 96
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 120 |
119
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) |
| 121 |
118 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) |
| 122 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 123 |
3 39 40 122 76 76
|
ffthf1o |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 124 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑋 ∈ Cat ) |
| 125 |
3 39 60 124 76
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 126 |
|
f1ocnvfv |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ∧ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 127 |
123 125 126
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 128 |
121 127
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 129 |
116 128
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 130 |
58
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 131 |
70
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
| 132 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑢 ∈ 𝑆 ) |
| 133 |
131 132
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 134 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑣 ∈ 𝑆 ) |
| 135 |
131 134
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 136 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑧 ∈ 𝑆 ) |
| 137 |
131 136
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑅 ) |
| 138 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 139 |
3 39 40 138 133 135
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 140 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 141 |
140 132 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 142 |
140 134 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 143 |
141 142
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 144 |
143
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 145 |
139 144
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 146 |
|
f1ocnv |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 147 |
|
f1of |
⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 148 |
145 146 147
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 149 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 150 |
148 149
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 151 |
3 39 40 138 135 137
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
| 152 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 153 |
140 136 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 154 |
142 153
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 155 |
154
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) |
| 156 |
151 155
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 157 |
|
f1ocnv |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 158 |
|
f1of |
⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 159 |
156 157 158
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 160 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 161 |
159 160
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ∈ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 162 |
3 39 62 61 130 133 135 137 150 161
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
| 163 |
141 142
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 = 〈 𝑢 , 𝑣 〉 ) |
| 164 |
163 153
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) ) |
| 165 |
|
f1ocnvfv2 |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 ) |
| 166 |
156 160 165
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 ) |
| 167 |
|
f1ocnvfv2 |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 ) |
| 168 |
145 149 167
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 ) |
| 169 |
164 166 168
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) |
| 170 |
162 169
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) |
| 171 |
3 39 40 138 133 137
|
ffthf1o |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
| 172 |
141 153
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 173 |
172
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) |
| 174 |
171 173
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 175 |
67
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑋 ∈ Cat ) |
| 176 |
3 39 62 175 133 135 137 150 161
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 177 |
|
f1ocnvfv |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
| 178 |
174 176 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
| 179 |
170 178
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) |
| 180 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑢 ) |
| 181 |
180
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 182 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
| 183 |
182
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 184 |
181 183
|
oveq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 185 |
184
|
cnveqd |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 186 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
| 187 |
186
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
| 188 |
185 9 187
|
ovmpoa |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 189 |
132 136 188
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 190 |
189
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) ) |
| 191 |
|
simpl |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑣 ) |
| 192 |
191
|
fveq2d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑣 ) ) |
| 193 |
|
simpr |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
| 194 |
193
|
fveq2d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 195 |
192 194
|
oveq12d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 196 |
195
|
cnveqd |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 197 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
| 198 |
197
|
cnvex |
⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
| 199 |
196 9 198
|
ovmpoa |
⊢ ( ( 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑣 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 200 |
134 136 199
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑣 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 201 |
200
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) |
| 202 |
132 134 92
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 203 |
202
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) |
| 204 |
201 203
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) |
| 205 |
179 190 204
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) ) |
| 206 |
4 3 40 39 59 60 61 62 66 67 70 74 104 129 205
|
isfuncd |
⊢ ( 𝜑 → ◡ 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ) |
| 207 |
3 58 206
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( ◡ 𝐹 ∘ 𝐹 ) , ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) 〉 ) |
| 208 |
|
eqid |
⊢ ( idfunc ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) |
| 209 |
208 3 67 39
|
idfuval |
⊢ ( 𝜑 → ( idfunc ‘ 𝑋 ) = 〈 ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) 〉 ) |
| 210 |
53 207 209
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = ( idfunc ‘ 𝑋 ) ) |
| 211 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 212 |
|
df-br |
⊢ ( 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 Func 𝑌 ) ) |
| 213 |
58 212
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 Func 𝑌 ) ) |
| 214 |
|
df-br |
⊢ ( ◡ 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ↔ 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 Func 𝑋 ) ) |
| 215 |
206 214
|
sylib |
⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 Func 𝑋 ) ) |
| 216 |
1 2 5 211 6 7 6 213 215
|
catcco |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) |
| 217 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 218 |
1 2 217 208 5 6
|
catcid |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) ) |
| 219 |
210 216 218
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 220 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 221 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 222 |
1
|
catccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 223 |
5 222
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 224 |
1 2 5 220 6 7
|
catchom |
⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 Func 𝑌 ) ) |
| 225 |
213 224
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 226 |
1 2 5 220 7 6
|
catchom |
⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 Func 𝑋 ) ) |
| 227 |
215 226
|
eleqtrrd |
⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 228 |
2 220 211 217 221 223 6 7 225 227
|
issect2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ↔ ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 229 |
219 228
|
mpbird |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |
| 230 |
|
f1ococnv2 |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑆 ) ) |
| 231 |
11 230
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑆 ) ) |
| 232 |
92
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 233 |
232
|
coeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 234 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 235 |
76
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 236 |
78
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 237 |
3 39 40 234 235 236
|
ffthf1o |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 238 |
101
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 239 |
238
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 240 |
237 239
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 241 |
|
f1ococnv2 |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 242 |
240 241
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 243 |
233 242
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 244 |
243
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) ) |
| 245 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑌 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 246 |
|
df-ov |
⊢ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( Hom ‘ 𝑌 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 247 |
245 246
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 248 |
247
|
reseq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 249 |
248
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) = ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 250 |
244 249
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) ) |
| 251 |
231 250
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 𝐹 ∘ ◡ 𝐹 ) , ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) 〉 = 〈 ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) 〉 ) |
| 252 |
4 206 58
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) = 〈 ( 𝐹 ∘ ◡ 𝐹 ) , ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) 〉 ) |
| 253 |
|
eqid |
⊢ ( idfunc ‘ 𝑌 ) = ( idfunc ‘ 𝑌 ) |
| 254 |
253 4 66 40
|
idfuval |
⊢ ( 𝜑 → ( idfunc ‘ 𝑌 ) = 〈 ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) 〉 ) |
| 255 |
251 252 254
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) = ( idfunc ‘ 𝑌 ) ) |
| 256 |
1 2 5 211 7 6 7 215 213
|
catcco |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) ) |
| 257 |
1 2 217 253 5 7
|
catcid |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( idfunc ‘ 𝑌 ) ) |
| 258 |
255 256 257
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 259 |
2 220 211 217 221 223 7 6 227 225
|
issect2 |
⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ↔ ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 260 |
258 259
|
mpbird |
⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) |
| 261 |
2 8 223 6 7 221
|
isinv |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ↔ ( 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ∧ 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) ) ) |
| 262 |
229 260 261
|
mpbir2and |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |