Step |
Hyp |
Ref |
Expression |
1 |
|
catciso.c |
|- C = ( CatCat ` U ) |
2 |
|
catciso.b |
|- B = ( Base ` C ) |
3 |
|
catciso.r |
|- R = ( Base ` X ) |
4 |
|
catciso.s |
|- S = ( Base ` Y ) |
5 |
|
catciso.u |
|- ( ph -> U e. V ) |
6 |
|
catciso.x |
|- ( ph -> X e. B ) |
7 |
|
catciso.y |
|- ( ph -> Y e. B ) |
8 |
|
catcisolem.i |
|- I = ( Inv ` C ) |
9 |
|
catcisolem.g |
|- H = ( x e. S , y e. S |-> `' ( ( `' F ` x ) G ( `' F ` y ) ) ) |
10 |
|
catcisolem.1 |
|- ( ph -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
11 |
|
catcisolem.2 |
|- ( ph -> F : R -1-1-onto-> S ) |
12 |
|
f1ococnv1 |
|- ( F : R -1-1-onto-> S -> ( `' F o. F ) = ( _I |` R ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( `' F o. F ) = ( _I |` R ) ) |
14 |
11
|
3ad2ant1 |
|- ( ( ph /\ u e. R /\ v e. R ) -> F : R -1-1-onto-> S ) |
15 |
|
f1of |
|- ( F : R -1-1-onto-> S -> F : R --> S ) |
16 |
14 15
|
syl |
|- ( ( ph /\ u e. R /\ v e. R ) -> F : R --> S ) |
17 |
|
simp2 |
|- ( ( ph /\ u e. R /\ v e. R ) -> u e. R ) |
18 |
16 17
|
ffvelrnd |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( F ` u ) e. S ) |
19 |
|
simp3 |
|- ( ( ph /\ u e. R /\ v e. R ) -> v e. R ) |
20 |
16 19
|
ffvelrnd |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( F ` v ) e. S ) |
21 |
|
simpl |
|- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> x = ( F ` u ) ) |
22 |
21
|
fveq2d |
|- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> ( `' F ` x ) = ( `' F ` ( F ` u ) ) ) |
23 |
|
simpr |
|- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> y = ( F ` v ) ) |
24 |
23
|
fveq2d |
|- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> ( `' F ` y ) = ( `' F ` ( F ` v ) ) ) |
25 |
22 24
|
oveq12d |
|- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
26 |
25
|
cnveqd |
|- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
27 |
|
ovex |
|- ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) e. _V |
28 |
27
|
cnvex |
|- `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) e. _V |
29 |
26 9 28
|
ovmpoa |
|- ( ( ( F ` u ) e. S /\ ( F ` v ) e. S ) -> ( ( F ` u ) H ( F ` v ) ) = `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
30 |
18 20 29
|
syl2anc |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( ( F ` u ) H ( F ` v ) ) = `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
31 |
|
f1ocnvfv1 |
|- ( ( F : R -1-1-onto-> S /\ u e. R ) -> ( `' F ` ( F ` u ) ) = u ) |
32 |
14 17 31
|
syl2anc |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( `' F ` ( F ` u ) ) = u ) |
33 |
|
f1ocnvfv1 |
|- ( ( F : R -1-1-onto-> S /\ v e. R ) -> ( `' F ` ( F ` v ) ) = v ) |
34 |
14 19 33
|
syl2anc |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( `' F ` ( F ` v ) ) = v ) |
35 |
32 34
|
oveq12d |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) = ( u G v ) ) |
36 |
35
|
cnveqd |
|- ( ( ph /\ u e. R /\ v e. R ) -> `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) = `' ( u G v ) ) |
37 |
30 36
|
eqtrd |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( ( F ` u ) H ( F ` v ) ) = `' ( u G v ) ) |
38 |
37
|
coeq1d |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) = ( `' ( u G v ) o. ( u G v ) ) ) |
39 |
|
eqid |
|- ( Hom ` X ) = ( Hom ` X ) |
40 |
|
eqid |
|- ( Hom ` Y ) = ( Hom ` Y ) |
41 |
10
|
3ad2ant1 |
|- ( ( ph /\ u e. R /\ v e. R ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
42 |
3 39 40 41 17 19
|
ffthf1o |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( u G v ) : ( u ( Hom ` X ) v ) -1-1-onto-> ( ( F ` u ) ( Hom ` Y ) ( F ` v ) ) ) |
43 |
|
f1ococnv1 |
|- ( ( u G v ) : ( u ( Hom ` X ) v ) -1-1-onto-> ( ( F ` u ) ( Hom ` Y ) ( F ` v ) ) -> ( `' ( u G v ) o. ( u G v ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
44 |
42 43
|
syl |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( `' ( u G v ) o. ( u G v ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
45 |
38 44
|
eqtrd |
|- ( ( ph /\ u e. R /\ v e. R ) -> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
46 |
45
|
mpoeq3dva |
|- ( ph -> ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) = ( u e. R , v e. R |-> ( _I |` ( u ( Hom ` X ) v ) ) ) ) |
47 |
|
fveq2 |
|- ( z = <. u , v >. -> ( ( Hom ` X ) ` z ) = ( ( Hom ` X ) ` <. u , v >. ) ) |
48 |
|
df-ov |
|- ( u ( Hom ` X ) v ) = ( ( Hom ` X ) ` <. u , v >. ) |
49 |
47 48
|
eqtr4di |
|- ( z = <. u , v >. -> ( ( Hom ` X ) ` z ) = ( u ( Hom ` X ) v ) ) |
50 |
49
|
reseq2d |
|- ( z = <. u , v >. -> ( _I |` ( ( Hom ` X ) ` z ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
51 |
50
|
mpompt |
|- ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) = ( u e. R , v e. R |-> ( _I |` ( u ( Hom ` X ) v ) ) ) |
52 |
46 51
|
eqtr4di |
|- ( ph -> ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) = ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) ) |
53 |
13 52
|
opeq12d |
|- ( ph -> <. ( `' F o. F ) , ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) >. = <. ( _I |` R ) , ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) >. ) |
54 |
|
inss1 |
|- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Full Y ) |
55 |
|
fullfunc |
|- ( X Full Y ) C_ ( X Func Y ) |
56 |
54 55
|
sstri |
|- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Func Y ) |
57 |
56
|
ssbri |
|- ( F ( ( X Full Y ) i^i ( X Faith Y ) ) G -> F ( X Func Y ) G ) |
58 |
10 57
|
syl |
|- ( ph -> F ( X Func Y ) G ) |
59 |
|
eqid |
|- ( Id ` Y ) = ( Id ` Y ) |
60 |
|
eqid |
|- ( Id ` X ) = ( Id ` X ) |
61 |
|
eqid |
|- ( comp ` Y ) = ( comp ` Y ) |
62 |
|
eqid |
|- ( comp ` X ) = ( comp ` X ) |
63 |
1 2 5
|
catcbas |
|- ( ph -> B = ( U i^i Cat ) ) |
64 |
|
inss2 |
|- ( U i^i Cat ) C_ Cat |
65 |
63 64
|
eqsstrdi |
|- ( ph -> B C_ Cat ) |
66 |
65 7
|
sseldd |
|- ( ph -> Y e. Cat ) |
67 |
65 6
|
sseldd |
|- ( ph -> X e. Cat ) |
68 |
|
f1ocnv |
|- ( F : R -1-1-onto-> S -> `' F : S -1-1-onto-> R ) |
69 |
|
f1of |
|- ( `' F : S -1-1-onto-> R -> `' F : S --> R ) |
70 |
11 68 69
|
3syl |
|- ( ph -> `' F : S --> R ) |
71 |
|
ovex |
|- ( ( `' F ` x ) G ( `' F ` y ) ) e. _V |
72 |
71
|
cnvex |
|- `' ( ( `' F ` x ) G ( `' F ` y ) ) e. _V |
73 |
9 72
|
fnmpoi |
|- H Fn ( S X. S ) |
74 |
73
|
a1i |
|- ( ph -> H Fn ( S X. S ) ) |
75 |
10
|
adantr |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
76 |
70
|
ffvelrnda |
|- ( ( ph /\ u e. S ) -> ( `' F ` u ) e. R ) |
77 |
76
|
adantrr |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( `' F ` u ) e. R ) |
78 |
70
|
ffvelrnda |
|- ( ( ph /\ v e. S ) -> ( `' F ` v ) e. R ) |
79 |
78
|
adantrl |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( `' F ` v ) e. R ) |
80 |
3 39 40 75 77 79
|
ffthf1o |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
81 |
|
f1ocnv |
|- ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
82 |
|
f1of |
|- ( `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
83 |
80 81 82
|
3syl |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
84 |
|
simpl |
|- ( ( x = u /\ y = v ) -> x = u ) |
85 |
84
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( `' F ` x ) = ( `' F ` u ) ) |
86 |
|
simpr |
|- ( ( x = u /\ y = v ) -> y = v ) |
87 |
86
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( `' F ` y ) = ( `' F ` v ) ) |
88 |
85 87
|
oveq12d |
|- ( ( x = u /\ y = v ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` u ) G ( `' F ` v ) ) ) |
89 |
88
|
cnveqd |
|- ( ( x = u /\ y = v ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
90 |
|
ovex |
|- ( ( `' F ` u ) G ( `' F ` v ) ) e. _V |
91 |
90
|
cnvex |
|- `' ( ( `' F ` u ) G ( `' F ` v ) ) e. _V |
92 |
89 9 91
|
ovmpoa |
|- ( ( u e. S /\ v e. S ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
93 |
92
|
adantl |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
94 |
11
|
adantr |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> F : R -1-1-onto-> S ) |
95 |
|
simprl |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> u e. S ) |
96 |
|
f1ocnvfv2 |
|- ( ( F : R -1-1-onto-> S /\ u e. S ) -> ( F ` ( `' F ` u ) ) = u ) |
97 |
94 95 96
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( F ` ( `' F ` u ) ) = u ) |
98 |
|
simprr |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> v e. S ) |
99 |
|
f1ocnvfv2 |
|- ( ( F : R -1-1-onto-> S /\ v e. S ) -> ( F ` ( `' F ` v ) ) = v ) |
100 |
94 98 99
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( F ` ( `' F ` v ) ) = v ) |
101 |
97 100
|
oveq12d |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) = ( u ( Hom ` Y ) v ) ) |
102 |
101
|
eqcomd |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( u ( Hom ` Y ) v ) = ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
103 |
93 102
|
feq12d |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( ( u H v ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) <-> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) ) |
104 |
83 103
|
mpbird |
|- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( u H v ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
105 |
|
simpr |
|- ( ( ph /\ u e. S ) -> u e. S ) |
106 |
|
simpl |
|- ( ( x = u /\ y = u ) -> x = u ) |
107 |
106
|
fveq2d |
|- ( ( x = u /\ y = u ) -> ( `' F ` x ) = ( `' F ` u ) ) |
108 |
|
simpr |
|- ( ( x = u /\ y = u ) -> y = u ) |
109 |
108
|
fveq2d |
|- ( ( x = u /\ y = u ) -> ( `' F ` y ) = ( `' F ` u ) ) |
110 |
107 109
|
oveq12d |
|- ( ( x = u /\ y = u ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` u ) G ( `' F ` u ) ) ) |
111 |
110
|
cnveqd |
|- ( ( x = u /\ y = u ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` u ) G ( `' F ` u ) ) ) |
112 |
|
ovex |
|- ( ( `' F ` u ) G ( `' F ` u ) ) e. _V |
113 |
112
|
cnvex |
|- `' ( ( `' F ` u ) G ( `' F ` u ) ) e. _V |
114 |
111 9 113
|
ovmpoa |
|- ( ( u e. S /\ u e. S ) -> ( u H u ) = `' ( ( `' F ` u ) G ( `' F ` u ) ) ) |
115 |
105 105 114
|
syl2anc |
|- ( ( ph /\ u e. S ) -> ( u H u ) = `' ( ( `' F ` u ) G ( `' F ` u ) ) ) |
116 |
115
|
fveq1d |
|- ( ( ph /\ u e. S ) -> ( ( u H u ) ` ( ( Id ` Y ) ` u ) ) = ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) ) |
117 |
58
|
adantr |
|- ( ( ph /\ u e. S ) -> F ( X Func Y ) G ) |
118 |
3 60 59 117 76
|
funcid |
|- ( ( ph /\ u e. S ) -> ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` ( F ` ( `' F ` u ) ) ) ) |
119 |
11 96
|
sylan |
|- ( ( ph /\ u e. S ) -> ( F ` ( `' F ` u ) ) = u ) |
120 |
119
|
fveq2d |
|- ( ( ph /\ u e. S ) -> ( ( Id ` Y ) ` ( F ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) ) |
121 |
118 120
|
eqtrd |
|- ( ( ph /\ u e. S ) -> ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) ) |
122 |
10
|
adantr |
|- ( ( ph /\ u e. S ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
123 |
3 39 40 122 76 76
|
ffthf1o |
|- ( ( ph /\ u e. S ) -> ( ( `' F ` u ) G ( `' F ` u ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` u ) ) ) ) |
124 |
67
|
adantr |
|- ( ( ph /\ u e. S ) -> X e. Cat ) |
125 |
3 39 60 124 76
|
catidcl |
|- ( ( ph /\ u e. S ) -> ( ( Id ` X ) ` ( `' F ` u ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) ) |
126 |
|
f1ocnvfv |
|- ( ( ( ( `' F ` u ) G ( `' F ` u ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` u ) ) ) /\ ( ( Id ` X ) ` ( `' F ` u ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) ) -> ( ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) -> ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) ) |
127 |
123 125 126
|
syl2anc |
|- ( ( ph /\ u e. S ) -> ( ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) -> ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) ) |
128 |
121 127
|
mpd |
|- ( ( ph /\ u e. S ) -> ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) |
129 |
116 128
|
eqtrd |
|- ( ( ph /\ u e. S ) -> ( ( u H u ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) |
130 |
58
|
3ad2ant1 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> F ( X Func Y ) G ) |
131 |
70
|
3ad2ant1 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> `' F : S --> R ) |
132 |
|
simp21 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> u e. S ) |
133 |
131 132
|
ffvelrnd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' F ` u ) e. R ) |
134 |
|
simp22 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> v e. S ) |
135 |
131 134
|
ffvelrnd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' F ` v ) e. R ) |
136 |
|
simp23 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> z e. S ) |
137 |
131 136
|
ffvelrnd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' F ` z ) e. R ) |
138 |
10
|
3ad2ant1 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
139 |
3 39 40 138 133 135
|
ffthf1o |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
140 |
11
|
3ad2ant1 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> F : R -1-1-onto-> S ) |
141 |
140 132 96
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( F ` ( `' F ` u ) ) = u ) |
142 |
140 134 99
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( F ` ( `' F ` v ) ) = v ) |
143 |
141 142
|
oveq12d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) = ( u ( Hom ` Y ) v ) ) |
144 |
143
|
f1oeq3d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) <-> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) ) |
145 |
139 144
|
mpbid |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) |
146 |
|
f1ocnv |
|- ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
147 |
|
f1of |
|- ( `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
148 |
145 146 147
|
3syl |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
149 |
|
simp3l |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> f e. ( u ( Hom ` Y ) v ) ) |
150 |
148 149
|
ffvelrnd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
151 |
3 39 40 138 135 137
|
ffthf1o |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` v ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) ) |
152 |
|
f1ocnvfv2 |
|- ( ( F : R -1-1-onto-> S /\ z e. S ) -> ( F ` ( `' F ` z ) ) = z ) |
153 |
140 136 152
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( F ` ( `' F ` z ) ) = z ) |
154 |
142 153
|
oveq12d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( F ` ( `' F ` v ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) = ( v ( Hom ` Y ) z ) ) |
155 |
154
|
f1oeq3d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` v ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) <-> ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) ) ) |
156 |
151 155
|
mpbid |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) ) |
157 |
|
f1ocnv |
|- ( ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) -> `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) -1-1-onto-> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
158 |
|
f1of |
|- ( `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) -1-1-onto-> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -> `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) --> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
159 |
156 157 158
|
3syl |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) --> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
160 |
|
simp3r |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> g e. ( v ( Hom ` Y ) z ) ) |
161 |
159 160
|
ffvelrnd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) e. ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
162 |
3 39 62 61 130 133 135 137 150 161
|
funcco |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) ( <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. ( comp ` Y ) ( F ` ( `' F ` z ) ) ) ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) ) |
163 |
141 142
|
opeq12d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. = <. u , v >. ) |
164 |
163 153
|
oveq12d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. ( comp ` Y ) ( F ` ( `' F ` z ) ) ) = ( <. u , v >. ( comp ` Y ) z ) ) |
165 |
|
f1ocnvfv2 |
|- ( ( ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) /\ g e. ( v ( Hom ` Y ) z ) ) -> ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) = g ) |
166 |
156 160 165
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) = g ) |
167 |
|
f1ocnvfv2 |
|- ( ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) /\ f e. ( u ( Hom ` Y ) v ) ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) = f ) |
168 |
145 149 167
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) = f ) |
169 |
164 166 168
|
oveq123d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) ( <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. ( comp ` Y ) ( F ` ( `' F ` z ) ) ) ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) |
170 |
162 169
|
eqtrd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) |
171 |
3 39 40 138 133 137
|
ffthf1o |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) ) |
172 |
141 153
|
oveq12d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) = ( u ( Hom ` Y ) z ) ) |
173 |
172
|
f1oeq3d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) <-> ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( u ( Hom ` Y ) z ) ) ) |
174 |
171 173
|
mpbid |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( u ( Hom ` Y ) z ) ) |
175 |
67
|
3ad2ant1 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> X e. Cat ) |
176 |
3 39 62 175 133 135 137 150 161
|
catcocl |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) ) |
177 |
|
f1ocnvfv |
|- ( ( ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( u ( Hom ` Y ) z ) /\ ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) ) -> ( ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) -> ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) ) |
178 |
174 176 177
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) -> ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) ) |
179 |
170 178
|
mpd |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) |
180 |
|
simpl |
|- ( ( x = u /\ y = z ) -> x = u ) |
181 |
180
|
fveq2d |
|- ( ( x = u /\ y = z ) -> ( `' F ` x ) = ( `' F ` u ) ) |
182 |
|
simpr |
|- ( ( x = u /\ y = z ) -> y = z ) |
183 |
182
|
fveq2d |
|- ( ( x = u /\ y = z ) -> ( `' F ` y ) = ( `' F ` z ) ) |
184 |
181 183
|
oveq12d |
|- ( ( x = u /\ y = z ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` u ) G ( `' F ` z ) ) ) |
185 |
184
|
cnveqd |
|- ( ( x = u /\ y = z ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` u ) G ( `' F ` z ) ) ) |
186 |
|
ovex |
|- ( ( `' F ` u ) G ( `' F ` z ) ) e. _V |
187 |
186
|
cnvex |
|- `' ( ( `' F ` u ) G ( `' F ` z ) ) e. _V |
188 |
185 9 187
|
ovmpoa |
|- ( ( u e. S /\ z e. S ) -> ( u H z ) = `' ( ( `' F ` u ) G ( `' F ` z ) ) ) |
189 |
132 136 188
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( u H z ) = `' ( ( `' F ` u ) G ( `' F ` z ) ) ) |
190 |
189
|
fveq1d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( u H z ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) ) |
191 |
|
simpl |
|- ( ( x = v /\ y = z ) -> x = v ) |
192 |
191
|
fveq2d |
|- ( ( x = v /\ y = z ) -> ( `' F ` x ) = ( `' F ` v ) ) |
193 |
|
simpr |
|- ( ( x = v /\ y = z ) -> y = z ) |
194 |
193
|
fveq2d |
|- ( ( x = v /\ y = z ) -> ( `' F ` y ) = ( `' F ` z ) ) |
195 |
192 194
|
oveq12d |
|- ( ( x = v /\ y = z ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` v ) G ( `' F ` z ) ) ) |
196 |
195
|
cnveqd |
|- ( ( x = v /\ y = z ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` v ) G ( `' F ` z ) ) ) |
197 |
|
ovex |
|- ( ( `' F ` v ) G ( `' F ` z ) ) e. _V |
198 |
197
|
cnvex |
|- `' ( ( `' F ` v ) G ( `' F ` z ) ) e. _V |
199 |
196 9 198
|
ovmpoa |
|- ( ( v e. S /\ z e. S ) -> ( v H z ) = `' ( ( `' F ` v ) G ( `' F ` z ) ) ) |
200 |
134 136 199
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( v H z ) = `' ( ( `' F ` v ) G ( `' F ` z ) ) ) |
201 |
200
|
fveq1d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( v H z ) ` g ) = ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) |
202 |
132 134 92
|
syl2anc |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
203 |
202
|
fveq1d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( u H v ) ` f ) = ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) |
204 |
201 203
|
oveq12d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( v H z ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( ( u H v ) ` f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) |
205 |
179 190 204
|
3eqtr4d |
|- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( u H z ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( ( v H z ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( ( u H v ) ` f ) ) ) |
206 |
4 3 40 39 59 60 61 62 66 67 70 74 104 129 205
|
isfuncd |
|- ( ph -> `' F ( Y Func X ) H ) |
207 |
3 58 206
|
cofuval2 |
|- ( ph -> ( <. `' F , H >. o.func <. F , G >. ) = <. ( `' F o. F ) , ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) >. ) |
208 |
|
eqid |
|- ( idFunc ` X ) = ( idFunc ` X ) |
209 |
208 3 67 39
|
idfuval |
|- ( ph -> ( idFunc ` X ) = <. ( _I |` R ) , ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) >. ) |
210 |
53 207 209
|
3eqtr4d |
|- ( ph -> ( <. `' F , H >. o.func <. F , G >. ) = ( idFunc ` X ) ) |
211 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
212 |
|
df-br |
|- ( F ( X Func Y ) G <-> <. F , G >. e. ( X Func Y ) ) |
213 |
58 212
|
sylib |
|- ( ph -> <. F , G >. e. ( X Func Y ) ) |
214 |
|
df-br |
|- ( `' F ( Y Func X ) H <-> <. `' F , H >. e. ( Y Func X ) ) |
215 |
206 214
|
sylib |
|- ( ph -> <. `' F , H >. e. ( Y Func X ) ) |
216 |
1 2 5 211 6 7 6 213 215
|
catcco |
|- ( ph -> ( <. `' F , H >. ( <. X , Y >. ( comp ` C ) X ) <. F , G >. ) = ( <. `' F , H >. o.func <. F , G >. ) ) |
217 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
218 |
1 2 217 208 5 6
|
catcid |
|- ( ph -> ( ( Id ` C ) ` X ) = ( idFunc ` X ) ) |
219 |
210 216 218
|
3eqtr4d |
|- ( ph -> ( <. `' F , H >. ( <. X , Y >. ( comp ` C ) X ) <. F , G >. ) = ( ( Id ` C ) ` X ) ) |
220 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
221 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
222 |
1
|
catccat |
|- ( U e. V -> C e. Cat ) |
223 |
5 222
|
syl |
|- ( ph -> C e. Cat ) |
224 |
1 2 5 220 6 7
|
catchom |
|- ( ph -> ( X ( Hom ` C ) Y ) = ( X Func Y ) ) |
225 |
213 224
|
eleqtrrd |
|- ( ph -> <. F , G >. e. ( X ( Hom ` C ) Y ) ) |
226 |
1 2 5 220 7 6
|
catchom |
|- ( ph -> ( Y ( Hom ` C ) X ) = ( Y Func X ) ) |
227 |
215 226
|
eleqtrrd |
|- ( ph -> <. `' F , H >. e. ( Y ( Hom ` C ) X ) ) |
228 |
2 220 211 217 221 223 6 7 225 227
|
issect2 |
|- ( ph -> ( <. F , G >. ( X ( Sect ` C ) Y ) <. `' F , H >. <-> ( <. `' F , H >. ( <. X , Y >. ( comp ` C ) X ) <. F , G >. ) = ( ( Id ` C ) ` X ) ) ) |
229 |
219 228
|
mpbird |
|- ( ph -> <. F , G >. ( X ( Sect ` C ) Y ) <. `' F , H >. ) |
230 |
|
f1ococnv2 |
|- ( F : R -1-1-onto-> S -> ( F o. `' F ) = ( _I |` S ) ) |
231 |
11 230
|
syl |
|- ( ph -> ( F o. `' F ) = ( _I |` S ) ) |
232 |
92
|
3adant1 |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
233 |
232
|
coeq2d |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) = ( ( ( `' F ` u ) G ( `' F ` v ) ) o. `' ( ( `' F ` u ) G ( `' F ` v ) ) ) ) |
234 |
10
|
3ad2ant1 |
|- ( ( ph /\ u e. S /\ v e. S ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
235 |
76
|
3adant3 |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( `' F ` u ) e. R ) |
236 |
78
|
3adant2 |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( `' F ` v ) e. R ) |
237 |
3 39 40 234 235 236
|
ffthf1o |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
238 |
101
|
3impb |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) = ( u ( Hom ` Y ) v ) ) |
239 |
238
|
f1oeq3d |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) <-> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) ) |
240 |
237 239
|
mpbid |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) |
241 |
|
f1ococnv2 |
|- ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. `' ( ( `' F ` u ) G ( `' F ` v ) ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
242 |
240 241
|
syl |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. `' ( ( `' F ` u ) G ( `' F ` v ) ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
243 |
233 242
|
eqtrd |
|- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
244 |
243
|
mpoeq3dva |
|- ( ph -> ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) = ( u e. S , v e. S |-> ( _I |` ( u ( Hom ` Y ) v ) ) ) ) |
245 |
|
fveq2 |
|- ( z = <. u , v >. -> ( ( Hom ` Y ) ` z ) = ( ( Hom ` Y ) ` <. u , v >. ) ) |
246 |
|
df-ov |
|- ( u ( Hom ` Y ) v ) = ( ( Hom ` Y ) ` <. u , v >. ) |
247 |
245 246
|
eqtr4di |
|- ( z = <. u , v >. -> ( ( Hom ` Y ) ` z ) = ( u ( Hom ` Y ) v ) ) |
248 |
247
|
reseq2d |
|- ( z = <. u , v >. -> ( _I |` ( ( Hom ` Y ) ` z ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
249 |
248
|
mpompt |
|- ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) = ( u e. S , v e. S |-> ( _I |` ( u ( Hom ` Y ) v ) ) ) |
250 |
244 249
|
eqtr4di |
|- ( ph -> ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) = ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) ) |
251 |
231 250
|
opeq12d |
|- ( ph -> <. ( F o. `' F ) , ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) >. = <. ( _I |` S ) , ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) >. ) |
252 |
4 206 58
|
cofuval2 |
|- ( ph -> ( <. F , G >. o.func <. `' F , H >. ) = <. ( F o. `' F ) , ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) >. ) |
253 |
|
eqid |
|- ( idFunc ` Y ) = ( idFunc ` Y ) |
254 |
253 4 66 40
|
idfuval |
|- ( ph -> ( idFunc ` Y ) = <. ( _I |` S ) , ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) >. ) |
255 |
251 252 254
|
3eqtr4d |
|- ( ph -> ( <. F , G >. o.func <. `' F , H >. ) = ( idFunc ` Y ) ) |
256 |
1 2 5 211 7 6 7 215 213
|
catcco |
|- ( ph -> ( <. F , G >. ( <. Y , X >. ( comp ` C ) Y ) <. `' F , H >. ) = ( <. F , G >. o.func <. `' F , H >. ) ) |
257 |
1 2 217 253 5 7
|
catcid |
|- ( ph -> ( ( Id ` C ) ` Y ) = ( idFunc ` Y ) ) |
258 |
255 256 257
|
3eqtr4d |
|- ( ph -> ( <. F , G >. ( <. Y , X >. ( comp ` C ) Y ) <. `' F , H >. ) = ( ( Id ` C ) ` Y ) ) |
259 |
2 220 211 217 221 223 7 6 227 225
|
issect2 |
|- ( ph -> ( <. `' F , H >. ( Y ( Sect ` C ) X ) <. F , G >. <-> ( <. F , G >. ( <. Y , X >. ( comp ` C ) Y ) <. `' F , H >. ) = ( ( Id ` C ) ` Y ) ) ) |
260 |
258 259
|
mpbird |
|- ( ph -> <. `' F , H >. ( Y ( Sect ` C ) X ) <. F , G >. ) |
261 |
2 8 223 6 7 221
|
isinv |
|- ( ph -> ( <. F , G >. ( X I Y ) <. `' F , H >. <-> ( <. F , G >. ( X ( Sect ` C ) Y ) <. `' F , H >. /\ <. `' F , H >. ( Y ( Sect ` C ) X ) <. F , G >. ) ) ) |
262 |
229 260 261
|
mpbir2and |
|- ( ph -> <. F , G >. ( X I Y ) <. `' F , H >. ) |