Step |
Hyp |
Ref |
Expression |
1 |
|
simprrl |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ) |
2 |
|
simprlr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) |
3 |
|
simpl11 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
4 |
|
simpl21 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
simpl22 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
7 |
|
simpl32 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
simpl33 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
cgrxfr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) ) ) |
10 |
3 4 5 6 7 8 9
|
syl132anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) ) ) |
12 |
1 2 11
|
mp2and |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) ) |
13 |
|
anass |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
14 |
|
simpl11 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
15 |
|
simpl21 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
16 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) |
17 |
|
simpl22 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
18 |
|
simpl32 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) |
19 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) |
20 |
|
simpl33 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) |
21 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ↔ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) |
22 |
14 15 16 17 18 19 20 21
|
syl133anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ↔ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ↔ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) |
24 |
|
df-3an |
⊢ ( ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ↔ ( ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) |
25 |
|
simpl23 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
26 |
|
simpl31 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
27 |
|
simpl12 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
28 |
|
simpl13 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
29 |
|
simpr1l |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ) |
30 |
|
simpr2r |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) |
31 |
14 27 28 25 26 15 16 29 30
|
cgrtr4and |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) → 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐶 , 𝑦 〉 ) |
32 |
|
simpr31 |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) → 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ) |
33 |
14 25 26 15 16 18 19 31 32
|
cgrtrand |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) → 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) |
34 |
24 33
|
sylan2br |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ∧ ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) ) ) → 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) |
35 |
34
|
expr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( ( 〈 𝐶 , 𝑦 〉 Cgr 〈 𝐺 , 𝑧 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝑦 , 𝐷 〉 Cgr 〈 𝑧 , 𝐻 〉 ) → 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) |
36 |
23 35
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 → 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) |
37 |
36
|
anim2d |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) → ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
38 |
13 37
|
sylanb |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) → ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
39 |
38
|
an32s |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) → ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
40 |
39
|
reximdva |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ( ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐶 , 〈 𝑦 , 𝐷 〉 〉 Cgr3 〈 𝐺 , 〈 𝑧 , 𝐻 〉 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
41 |
12 40
|
mpd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ∧ ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) |
42 |
41
|
expr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) → ( ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
43 |
42
|
an32s |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
44 |
43
|
rexlimdva |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) → ( ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
45 |
|
simp11 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
46 |
|
simp12 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
47 |
|
simp13 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
48 |
|
simp21 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
49 |
|
simp22 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
50 |
|
brsegle |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Seg≤ 〈 𝐶 , 𝐷 〉 ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) |
51 |
45 46 47 48 49 50
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Seg≤ 〈 𝐶 , 𝐷 〉 ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) → ( 〈 𝐴 , 𝐵 〉 Seg≤ 〈 𝐶 , 𝐷 〉 ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn 〈 𝐶 , 𝐷 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝑦 〉 ) ) ) |
53 |
|
simp23 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
54 |
|
simp31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
55 |
|
simp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) |
56 |
|
simp33 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) |
57 |
|
brsegle |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐸 , 𝐹 〉 Seg≤ 〈 𝐺 , 𝐻 〉 ↔ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
58 |
45 53 54 55 56 57
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐸 , 𝐹 〉 Seg≤ 〈 𝐺 , 𝐻 〉 ↔ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) → ( 〈 𝐸 , 𝐹 〉 Seg≤ 〈 𝐺 , 𝐻 〉 ↔ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑧 Btwn 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐸 , 𝐹 〉 Cgr 〈 𝐺 , 𝑧 〉 ) ) ) |
60 |
44 52 59
|
3imtr4d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) → ( 〈 𝐴 , 𝐵 〉 Seg≤ 〈 𝐶 , 𝐷 〉 → 〈 𝐸 , 𝐹 〉 Seg≤ 〈 𝐺 , 𝐻 〉 ) ) |
61 |
60
|
exp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 → ( 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 → ( 〈 𝐴 , 𝐵 〉 Seg≤ 〈 𝐶 , 𝐷 〉 → 〈 𝐸 , 𝐹 〉 Seg≤ 〈 𝐺 , 𝐻 〉 ) ) ) ) |
62 |
61
|
3impd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ∧ 〈 𝐴 , 𝐵 〉 Seg≤ 〈 𝐶 , 𝐷 〉 ) → 〈 𝐸 , 𝐹 〉 Seg≤ 〈 𝐺 , 𝐻 〉 ) ) |