| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voncmpl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
voncmpl.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
| 3 |
|
voncmpl.e |
⊢ ( 𝜑 → 𝐸 ∈ dom ( voln ‘ 𝑋 ) ) |
| 4 |
|
voncmpl.z |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐸 ) = 0 ) |
| 5 |
|
voncmpl.f |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐸 ) |
| 6 |
1
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
| 7 |
|
eqid |
⊢ ∪ dom ( voln* ‘ 𝑋 ) = ∪ dom ( voln* ‘ 𝑋 ) |
| 8 |
1
|
dmvon |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 9 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
| 10 |
9
|
caragenss |
⊢ ( ( voln* ‘ 𝑋 ) ∈ OutMeas → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 12 |
8 11
|
eqsstrd |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 13 |
12 3
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ dom ( voln* ‘ 𝑋 ) ) |
| 14 |
|
elssuni |
⊢ ( 𝐸 ∈ dom ( voln* ‘ 𝑋 ) → 𝐸 ⊆ ∪ dom ( voln* ‘ 𝑋 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ dom ( voln* ‘ 𝑋 ) ) |
| 16 |
5 15
|
sstrd |
⊢ ( 𝜑 → 𝐹 ⊆ ∪ dom ( voln* ‘ 𝑋 ) ) |
| 17 |
4
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ( voln ‘ 𝑋 ) ‘ 𝐸 ) ) |
| 18 |
1
|
vonval |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐸 ) = ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐸 ) ) |
| 20 |
17 19
|
eqtrd |
⊢ ( 𝜑 → 0 = ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐸 ) ) |
| 21 |
2
|
a1i |
⊢ ( 𝜑 → 𝑆 = dom ( voln ‘ 𝑋 ) ) |
| 22 |
21 8
|
eqtr2d |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = 𝑆 ) |
| 23 |
22
|
reseq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( ( voln* ‘ 𝑋 ) ↾ 𝑆 ) ) |
| 24 |
23
|
fveq1d |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐸 ) = ( ( ( voln* ‘ 𝑋 ) ↾ 𝑆 ) ‘ 𝐸 ) ) |
| 25 |
3 2
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
| 26 |
|
fvres |
⊢ ( 𝐸 ∈ 𝑆 → ( ( ( voln* ‘ 𝑋 ) ↾ 𝑆 ) ‘ 𝐸 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐸 ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ↾ 𝑆 ) ‘ 𝐸 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐸 ) ) |
| 28 |
20 24 27
|
3eqtrrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐸 ) = 0 ) |
| 29 |
6 7 15 28 5
|
omess0 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐹 ) = 0 ) |
| 30 |
6 7 16 29 9
|
caragencmpl |
⊢ ( 𝜑 → 𝐹 ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 31 |
30 22
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |