| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voncmpl.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | voncmpl.s | ⊢ 𝑆  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 3 |  | voncmpl.e | ⊢ ( 𝜑  →  𝐸  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 4 |  | voncmpl.z | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐸 )  =  0 ) | 
						
							| 5 |  | voncmpl.f | ⊢ ( 𝜑  →  𝐹  ⊆  𝐸 ) | 
						
							| 6 | 1 | ovnome | ⊢ ( 𝜑  →  ( voln* ‘ 𝑋 )  ∈  OutMeas ) | 
						
							| 7 |  | eqid | ⊢ ∪  dom  ( voln* ‘ 𝑋 )  =  ∪  dom  ( voln* ‘ 𝑋 ) | 
						
							| 8 | 1 | dmvon | ⊢ ( 𝜑  →  dom  ( voln ‘ 𝑋 )  =  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) )  =  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) | 
						
							| 10 | 9 | caragenss | ⊢ ( ( voln* ‘ 𝑋 )  ∈  OutMeas  →  ( CaraGen ‘ ( voln* ‘ 𝑋 ) )  ⊆  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝜑  →  ( CaraGen ‘ ( voln* ‘ 𝑋 ) )  ⊆  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 12 | 8 11 | eqsstrd | ⊢ ( 𝜑  →  dom  ( voln ‘ 𝑋 )  ⊆  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 13 | 12 3 | sseldd | ⊢ ( 𝜑  →  𝐸  ∈  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 14 |  | elssuni | ⊢ ( 𝐸  ∈  dom  ( voln* ‘ 𝑋 )  →  𝐸  ⊆  ∪  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝐸  ⊆  ∪  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 16 | 5 15 | sstrd | ⊢ ( 𝜑  →  𝐹  ⊆  ∪  dom  ( voln* ‘ 𝑋 ) ) | 
						
							| 17 | 4 | eqcomd | ⊢ ( 𝜑  →  0  =  ( ( voln ‘ 𝑋 ) ‘ 𝐸 ) ) | 
						
							| 18 | 1 | vonval | ⊢ ( 𝜑  →  ( voln ‘ 𝑋 )  =  ( ( voln* ‘ 𝑋 )  ↾  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐸 )  =  ( ( ( voln* ‘ 𝑋 )  ↾  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐸 ) ) | 
						
							| 20 | 17 19 | eqtrd | ⊢ ( 𝜑  →  0  =  ( ( ( voln* ‘ 𝑋 )  ↾  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐸 ) ) | 
						
							| 21 | 2 | a1i | ⊢ ( 𝜑  →  𝑆  =  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 22 | 21 8 | eqtr2d | ⊢ ( 𝜑  →  ( CaraGen ‘ ( voln* ‘ 𝑋 ) )  =  𝑆 ) | 
						
							| 23 | 22 | reseq2d | ⊢ ( 𝜑  →  ( ( voln* ‘ 𝑋 )  ↾  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )  =  ( ( voln* ‘ 𝑋 )  ↾  𝑆 ) ) | 
						
							| 24 | 23 | fveq1d | ⊢ ( 𝜑  →  ( ( ( voln* ‘ 𝑋 )  ↾  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐸 )  =  ( ( ( voln* ‘ 𝑋 )  ↾  𝑆 ) ‘ 𝐸 ) ) | 
						
							| 25 | 3 2 | eleqtrrdi | ⊢ ( 𝜑  →  𝐸  ∈  𝑆 ) | 
						
							| 26 |  | fvres | ⊢ ( 𝐸  ∈  𝑆  →  ( ( ( voln* ‘ 𝑋 )  ↾  𝑆 ) ‘ 𝐸 )  =  ( ( voln* ‘ 𝑋 ) ‘ 𝐸 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  ( ( ( voln* ‘ 𝑋 )  ↾  𝑆 ) ‘ 𝐸 )  =  ( ( voln* ‘ 𝑋 ) ‘ 𝐸 ) ) | 
						
							| 28 | 20 24 27 | 3eqtrrd | ⊢ ( 𝜑  →  ( ( voln* ‘ 𝑋 ) ‘ 𝐸 )  =  0 ) | 
						
							| 29 | 6 7 15 28 5 | omess0 | ⊢ ( 𝜑  →  ( ( voln* ‘ 𝑋 ) ‘ 𝐹 )  =  0 ) | 
						
							| 30 | 6 7 16 29 9 | caragencmpl | ⊢ ( 𝜑  →  𝐹  ∈  ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) | 
						
							| 31 | 30 22 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) |