Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imadif | Unicode version |
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.) |
Ref | Expression |
---|---|
imadif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandir 829 | . . . . . . . 8 | |
2 | 1 | exbii 1667 | . . . . . . 7 |
3 | 19.40 1679 | . . . . . . 7 | |
4 | 2, 3 | sylbi 195 | . . . . . 6 |
5 | nfv 1707 | . . . . . . . . . . 11 | |
6 | nfe1 1840 | . . . . . . . . . . 11 | |
7 | 5, 6 | nfan 1928 | . . . . . . . . . 10 |
8 | funmo 5609 | . . . . . . . . . . . . . 14 | |
9 | vex 3112 | . . . . . . . . . . . . . . . 16 | |
10 | vex 3112 | . . . . . . . . . . . . . . . 16 | |
11 | 9, 10 | brcnv 5190 | . . . . . . . . . . . . . . 15 |
12 | 11 | mobii 2307 | . . . . . . . . . . . . . 14 |
13 | 8, 12 | sylib 196 | . . . . . . . . . . . . 13 |
14 | mopick 2356 | . . . . . . . . . . . . 13 | |
15 | 13, 14 | sylan 471 | . . . . . . . . . . . 12 |
16 | 15 | con2d 115 | . . . . . . . . . . 11 |
17 | imnan 422 | . . . . . . . . . . 11 | |
18 | 16, 17 | sylib 196 | . . . . . . . . . 10 |
19 | 7, 18 | alrimi 1877 | . . . . . . . . 9 |
20 | 19 | ex 434 | . . . . . . . 8 |
21 | exancom 1671 | . . . . . . . 8 | |
22 | alnex 1614 | . . . . . . . 8 | |
23 | 20, 21, 22 | 3imtr3g 269 | . . . . . . 7 |
24 | 23 | anim2d 565 | . . . . . 6 |
25 | 4, 24 | syl5 32 | . . . . 5 |
26 | 19.29r 1684 | . . . . . . 7 | |
27 | 22, 26 | sylan2br 476 | . . . . . 6 |
28 | andi 867 | . . . . . . . 8 | |
29 | ianor 488 | . . . . . . . . 9 | |
30 | 29 | anbi2i 694 | . . . . . . . 8 |
31 | an32 798 | . . . . . . . . 9 | |
32 | pm3.24 882 | . . . . . . . . . . . 12 | |
33 | 32 | intnan 914 | . . . . . . . . . . 11 |
34 | anass 649 | . . . . . . . . . . 11 | |
35 | 33, 34 | mtbir 299 | . . . . . . . . . 10 |
36 | 35 | biorfi 407 | . . . . . . . . 9 |
37 | 31, 36 | bitri 249 | . . . . . . . 8 |
38 | 28, 30, 37 | 3bitr4i 277 | . . . . . . 7 |
39 | 38 | exbii 1667 | . . . . . 6 |
40 | 27, 39 | sylib 196 | . . . . 5 |
41 | 25, 40 | impbid1 203 | . . . 4 |
42 | eldif 3485 | . . . . . 6 | |
43 | 42 | anbi1i 695 | . . . . 5 |
44 | 43 | exbii 1667 | . . . 4 |
45 | 9 | elima2 5348 | . . . . 5 |
46 | 9 | elima2 5348 | . . . . . 6 |
47 | 46 | notbii 296 | . . . . 5 |
48 | 45, 47 | anbi12i 697 | . . . 4 |
49 | 41, 44, 48 | 3bitr4g 288 | . . 3 |
50 | 9 | elima2 5348 | . . 3 |
51 | eldif 3485 | . . 3 | |
52 | 49, 50, 51 | 3bitr4g 288 | . 2 |
53 | 52 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
E* wmo 2283 \ cdif 3472 class class class wbr 4452
`' ccnv 5003 " cima 5007 Fun wfun 5587 |
This theorem is referenced by: imain 5669 resdif 5841 difpreima 6015 domunsncan 7637 phplem4 7719 php3 7723 infdifsn 8094 cantnfp1lem3 8120 cantnfp1lem3OLD 8146 mapfienOLD 8159 enfin1ai 8785 fin1a2lem7 8807 symgfixelsi 16460 dprdf1o 17079 frlmlbs 18831 f1lindf 18857 cnclima 19769 iscncl 19770 qtopcld 20214 qtoprest 20218 qtopcmap 20220 mbfimaicc 22040 ismbf3d 22061 i1fd 22088 ballotlemfrc 28465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 |
Copyright terms: Public domain | W3C validator |