Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpn2 | Unicode version |
Description: There exist infinitely many prime numbers: the set of all primes is unbounded by infpn 14430, so by unben 14427 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpn2.1 |
Ref | Expression |
---|---|
infpn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpn2.1 | . . 3 | |
2 | ssrab2 3584 | . . 3 | |
3 | 1, 2 | eqsstri 3533 | . 2 |
4 | infpn 14430 | . . . . 5 | |
5 | nnge1 10587 | . . . . . . . . . . 11 | |
6 | 5 | adantr 465 | . . . . . . . . . 10 |
7 | nnre 10568 | . . . . . . . . . . 11 | |
8 | nnre 10568 | . . . . . . . . . . 11 | |
9 | 1re 9616 | . . . . . . . . . . . 12 | |
10 | lelttr 9696 | . . . . . . . . . . . 12 | |
11 | 9, 10 | mp3an1 1311 | . . . . . . . . . . 11 |
12 | 7, 8, 11 | syl2an 477 | . . . . . . . . . 10 |
13 | 6, 12 | mpand 675 | . . . . . . . . 9 |
14 | 13 | ancld 553 | . . . . . . . 8 |
15 | 14 | anim1d 564 | . . . . . . 7 |
16 | anass 649 | . . . . . . 7 | |
17 | 15, 16 | syl6ib 226 | . . . . . 6 |
18 | 17 | reximdva 2932 | . . . . 5 |
19 | 4, 18 | mpd 15 | . . . 4 |
20 | breq2 4456 | . . . . . . . . 9 | |
21 | oveq1 6303 | . . . . . . . . . . . 12 | |
22 | 21 | eleq1d 2526 | . . . . . . . . . . 11 |
23 | equequ2 1799 | . . . . . . . . . . . 12 | |
24 | 23 | orbi2d 701 | . . . . . . . . . . 11 |
25 | 22, 24 | imbi12d 320 | . . . . . . . . . 10 |
26 | 25 | ralbidv 2896 | . . . . . . . . 9 |
27 | 20, 26 | anbi12d 710 | . . . . . . . 8 |
28 | 27, 1 | elrab2 3259 | . . . . . . 7 |
29 | 28 | anbi1i 695 | . . . . . 6 |
30 | anass 649 | . . . . . 6 | |
31 | ancom 450 | . . . . . . 7 | |
32 | 31 | anbi2i 694 | . . . . . 6 |
33 | 29, 30, 32 | 3bitri 271 | . . . . 5 |
34 | 33 | rexbii2 2957 | . . . 4 |
35 | 19, 34 | sylibr 212 | . . 3 |
36 | 35 | rgen 2817 | . 2 |
37 | unben 14427 | . 2 | |
38 | 3, 36, 37 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 { crab 2811
C_ wss 3475 class class class wbr 4452
(class class class)co 6296 cen 7533 cr 9512 1 c1 9514 clt 9649 cle 9650 cdiv 10231 cn 10561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-fac 12354 |
Copyright terms: Public domain | W3C validator |