Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom1 Unicode version

Theorem infunsdom1 8614
 Description: The union of two sets that are strictly dominated by the infinite set is also dominated by . This version of infunsdom 8615 assumes additionally that is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom1

Proof of Theorem infunsdom1
StepHypRef Expression
1 simprl 756 . . . . 5
2 domsdomtr 7672 . . . . 5
31, 2sylan 471 . . . 4
4 unfi2 7809 . . . 4
53, 4sylancom 667 . . 3
6 simpllr 760 . . 3
7 sdomdomtr 7670 . . 3
85, 6, 7syl2anc 661 . 2
9 omelon 8084 . . . . . 6
10 onenon 8351 . . . . . 6
119, 10ax-mp 5 . . . . 5
12 simpll 753 . . . . . 6
13 sdomdom 7563 . . . . . . 7
1413ad2antll 728 . . . . . 6
15 numdom 8440 . . . . . 6
1612, 14, 15syl2anc 661 . . . . 5
17 domtri2 8391 . . . . 5
1811, 16, 17sylancr 663 . . . 4
1918biimpar 485 . . 3
20 uncom 3647 . . . . 5
2116adantr 465 . . . . . 6
22 simpr 461 . . . . . 6
231adantr 465 . . . . . 6
24 infunabs 8608 . . . . . 6
2521, 22, 23, 24syl3anc 1228 . . . . 5
2620, 25syl5eqbr 4485 . . . 4
27 simplrr 762 . . . 4
28 ensdomtr 7673 . . . 4
2926, 27, 28syl2anc 661 . . 3
3019, 29syldan 470 . 2
318, 30pm2.61dan 791 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  e.wcel 1818  u.cun 3473   class class class wbr 4452   con0 4883  domcdm 5004   com 6700   cen 7533   cdom 7534   csdm 7535   ccrd 8337 This theorem is referenced by:  infunsdom  8615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-inf2 8079 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-1o 7149  df-2o 7150  df-oadd 7153  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-oi 7956  df-card 8341  df-cda 8569
 Copyright terms: Public domain W3C validator