| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj600.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 2 |
|
bnj600.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 3 |
|
bnj600.3 |
|- D = ( _om \ { (/) } ) |
| 4 |
|
bnj600.4 |
|- ( ch <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn n /\ ph /\ ps ) ) ) |
| 5 |
|
bnj600.5 |
|- ( th <-> A. m e. D ( m _E n -> [. m / n ]. ch ) ) |
| 6 |
|
bnj600.10 |
|- ( ph' <-> [. m / n ]. ph ) |
| 7 |
|
bnj600.11 |
|- ( ps' <-> [. m / n ]. ps ) |
| 8 |
|
bnj600.12 |
|- ( ch' <-> [. m / n ]. ch ) |
| 9 |
|
bnj600.13 |
|- ( ph" <-> [. G / f ]. ph ) |
| 10 |
|
bnj600.14 |
|- ( ps" <-> [. G / f ]. ps ) |
| 11 |
|
bnj600.15 |
|- ( ch" <-> [. G / f ]. ch ) |
| 12 |
|
bnj600.16 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
| 13 |
|
bnj600.17 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
| 14 |
|
bnj600.18 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
| 15 |
|
bnj600.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
| 16 |
|
bnj600.20 |
|- ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) ) |
| 17 |
|
bnj600.21 |
|- ( rh <-> ( i e. _om /\ suc i e. n /\ m =/= suc i ) ) |
| 18 |
|
bnj600.22 |
|- B = U_ y e. ( f ` i ) _pred ( y , A , R ) |
| 19 |
|
bnj600.23 |
|- C = U_ y e. ( f ` p ) _pred ( y , A , R ) |
| 20 |
|
bnj600.24 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
| 21 |
|
bnj600.25 |
|- L = U_ y e. ( G ` p ) _pred ( y , A , R ) |
| 22 |
|
bnj600.26 |
|- G = ( f u. { <. m , C >. } ) |
| 23 |
12
|
bnj528 |
|- G e. _V |
| 24 |
|
vex |
|- m e. _V |
| 25 |
4 6 7 8 24
|
bnj207 |
|- ( ch' <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) |
| 26 |
1 9 23
|
bnj609 |
|- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) |
| 27 |
2 10 23
|
bnj611 |
|- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
| 28 |
3
|
bnj168 |
|- ( ( n =/= 1o /\ n e. D ) -> E. m e. D n = suc m ) |
| 29 |
|
df-rex |
|- ( E. m e. D n = suc m <-> E. m ( m e. D /\ n = suc m ) ) |
| 30 |
28 29
|
sylib |
|- ( ( n =/= 1o /\ n e. D ) -> E. m ( m e. D /\ n = suc m ) ) |
| 31 |
3
|
bnj158 |
|- ( m e. D -> E. p e. _om m = suc p ) |
| 32 |
|
df-rex |
|- ( E. p e. _om m = suc p <-> E. p ( p e. _om /\ m = suc p ) ) |
| 33 |
31 32
|
sylib |
|- ( m e. D -> E. p ( p e. _om /\ m = suc p ) ) |
| 34 |
33
|
adantr |
|- ( ( m e. D /\ n = suc m ) -> E. p ( p e. _om /\ m = suc p ) ) |
| 35 |
34
|
ancri |
|- ( ( m e. D /\ n = suc m ) -> ( E. p ( p e. _om /\ m = suc p ) /\ ( m e. D /\ n = suc m ) ) ) |
| 36 |
35
|
bnj534 |
|- ( ( m e. D /\ n = suc m ) -> E. p ( ( p e. _om /\ m = suc p ) /\ ( m e. D /\ n = suc m ) ) ) |
| 37 |
|
bnj432 |
|- ( ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) <-> ( ( p e. _om /\ m = suc p ) /\ ( m e. D /\ n = suc m ) ) ) |
| 38 |
37
|
exbii |
|- ( E. p ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) <-> E. p ( ( p e. _om /\ m = suc p ) /\ ( m e. D /\ n = suc m ) ) ) |
| 39 |
36 38
|
sylibr |
|- ( ( m e. D /\ n = suc m ) -> E. p ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
| 40 |
39
|
eximi |
|- ( E. m ( m e. D /\ n = suc m ) -> E. m E. p ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
| 41 |
30 40
|
syl |
|- ( ( n =/= 1o /\ n e. D ) -> E. m E. p ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
| 42 |
15
|
2exbii |
|- ( E. m E. p et <-> E. m E. p ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
| 43 |
41 42
|
sylibr |
|- ( ( n =/= 1o /\ n e. D ) -> E. m E. p et ) |
| 44 |
|
rsp |
|- ( A. m e. D ( m _E n -> [. m / n ]. ch ) -> ( m e. D -> ( m _E n -> [. m / n ]. ch ) ) ) |
| 45 |
5 44
|
sylbi |
|- ( th -> ( m e. D -> ( m _E n -> [. m / n ]. ch ) ) ) |
| 46 |
45
|
3imp |
|- ( ( th /\ m e. D /\ m _E n ) -> [. m / n ]. ch ) |
| 47 |
46 8
|
sylibr |
|- ( ( th /\ m e. D /\ m _E n ) -> ch' ) |
| 48 |
1 6 24
|
bnj523 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 49 |
2 7 24
|
bnj539 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 50 |
48 49 3 12 13 14
|
bnj544 |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
| 51 |
14 15 50
|
bnj561 |
|- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n ) |
| 52 |
48 3 12 13 14 50 26
|
bnj545 |
|- ( ( R _FrSe A /\ ta /\ si ) -> ph" ) |
| 53 |
14 15 52
|
bnj562 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ph" ) |
| 54 |
3 12 13 14 15 16 18 19 20 21 22 48 49 50 17 51 27
|
bnj571 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) |
| 55 |
|
biid |
|- ( [. z / f ]. ph <-> [. z / f ]. ph ) |
| 56 |
|
biid |
|- ( [. z / f ]. ps <-> [. z / f ]. ps ) |
| 57 |
|
biid |
|- ( [. G / z ]. [. z / f ]. ph <-> [. G / z ]. [. z / f ]. ph ) |
| 58 |
|
biid |
|- ( [. G / z ]. [. z / f ]. ps <-> [. G / z ]. [. z / f ]. ps ) |
| 59 |
5 9 10 13 15 23 25 26 27 43 47 51 53 54 1 2 55 56 57 58
|
bnj607 |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
| 60 |
1 2 3
|
bnj579 |
|- ( n e. D -> E* f ( f Fn n /\ ph /\ ps ) ) |
| 61 |
60
|
a1d |
|- ( n e. D -> ( ( R _FrSe A /\ x e. A ) -> E* f ( f Fn n /\ ph /\ ps ) ) ) |
| 62 |
61
|
3ad2ant2 |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E* f ( f Fn n /\ ph /\ ps ) ) ) |
| 63 |
59 62
|
jcad |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> ( E. f ( f Fn n /\ ph /\ ps ) /\ E* f ( f Fn n /\ ph /\ ps ) ) ) ) |
| 64 |
|
df-eu |
|- ( E! f ( f Fn n /\ ph /\ ps ) <-> ( E. f ( f Fn n /\ ph /\ ps ) /\ E* f ( f Fn n /\ ph /\ ps ) ) ) |
| 65 |
63 64
|
imbitrrdi |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn n /\ ph /\ ps ) ) ) |
| 66 |
65 4
|
sylibr |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ch ) |
| 67 |
66
|
3expib |
|- ( n =/= 1o -> ( ( n e. D /\ th ) -> ch ) ) |