| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3an |
|- ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ P Btwn <. B , C >. ) ) |
| 2 |
|
simpr11 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> A =/= P ) |
| 3 |
|
simpr12 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> B =/= P ) |
| 4 |
|
simpr13 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> C =/= P ) |
| 5 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> N e. NN ) |
| 6 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
| 7 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 8 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 9 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. A , C >. ) |
| 10 |
5 6 7 8 9
|
btwncomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. C , A >. ) |
| 11 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 12 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. B , C >. ) |
| 13 |
5 6 11 8 12
|
btwncomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. C , B >. ) |
| 14 |
|
btwnconn2 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C =/= P /\ P Btwn <. C , A >. /\ P Btwn <. C , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 15 |
14
|
3com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( C =/= P /\ P Btwn <. C , A >. /\ P Btwn <. C , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> ( ( C =/= P /\ P Btwn <. C , A >. /\ P Btwn <. C , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 17 |
4 10 13 16
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
| 18 |
2 3 17
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 19 |
1 18
|
sylan2br |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ P Btwn <. B , C >. ) ) -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 20 |
19
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P Btwn <. B , C >. -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 21 |
|
simp3 |
|- ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
| 22 |
|
df-3an |
|- ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ A Btwn <. P , B >. ) ) |
| 23 |
|
simpr11 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> A =/= P ) |
| 24 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> A Btwn <. P , B >. ) |
| 25 |
5 7 6 11 24
|
btwncomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> A Btwn <. B , P >. ) |
| 26 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> P Btwn <. A , C >. ) |
| 27 |
|
btwnouttr2 |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A =/= P /\ A Btwn <. B , P >. /\ P Btwn <. A , C >. ) -> P Btwn <. B , C >. ) ) |
| 28 |
5 11 7 6 8 27
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A =/= P /\ A Btwn <. B , P >. /\ P Btwn <. A , C >. ) -> P Btwn <. B , C >. ) ) |
| 29 |
28
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> ( ( A =/= P /\ A Btwn <. B , P >. /\ P Btwn <. A , C >. ) -> P Btwn <. B , C >. ) ) |
| 30 |
23 25 26 29
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> P Btwn <. B , C >. ) |
| 31 |
22 30
|
sylan2br |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ A Btwn <. P , B >. ) ) -> P Btwn <. B , C >. ) |
| 32 |
31
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( A Btwn <. P , B >. -> P Btwn <. B , C >. ) ) |
| 33 |
|
df-3an |
|- ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ B Btwn <. P , A >. ) ) |
| 34 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> B Btwn <. P , A >. ) |
| 35 |
5 11 6 7 34
|
btwncomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> B Btwn <. A , P >. ) |
| 36 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> P Btwn <. A , C >. ) |
| 37 |
5 7 11 6 8 35 36
|
btwnexch3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> P Btwn <. B , C >. ) |
| 38 |
33 37
|
sylan2br |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ B Btwn <. P , A >. ) ) -> P Btwn <. B , C >. ) |
| 39 |
38
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( B Btwn <. P , A >. -> P Btwn <. B , C >. ) ) |
| 40 |
32 39
|
jaod |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> P Btwn <. B , C >. ) ) |
| 41 |
21 40
|
syl5 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> P Btwn <. B , C >. ) ) |
| 42 |
20 41
|
impbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P Btwn <. B , C >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 43 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 44 |
5 6 7 11 43
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 46 |
42 45
|
bitr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P Btwn <. B , C >. <-> P OutsideOf <. A , B >. ) ) |
| 47 |
46
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) -> ( P Btwn <. B , C >. <-> P OutsideOf <. A , B >. ) ) ) |