| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3an |  |-  ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ P Btwn <. B , C >. ) ) | 
						
							| 2 |  | simpr11 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> A =/= P ) | 
						
							| 3 |  | simpr12 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> B =/= P ) | 
						
							| 4 |  | simpr13 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> C =/= P ) | 
						
							| 5 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 6 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 7 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 8 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 9 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. A , C >. ) | 
						
							| 10 | 5 6 7 8 9 | btwncomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. C , A >. ) | 
						
							| 11 |  | simp2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 12 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. B , C >. ) | 
						
							| 13 | 5 6 11 8 12 | btwncomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> P Btwn <. C , B >. ) | 
						
							| 14 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C =/= P /\ P Btwn <. C , A >. /\ P Btwn <. C , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 15 | 14 | 3com23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( C =/= P /\ P Btwn <. C , A >. /\ P Btwn <. C , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> ( ( C =/= P /\ P Btwn <. C , A >. /\ P Btwn <. C , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 17 | 4 10 13 16 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 18 | 2 3 17 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ P Btwn <. B , C >. ) ) -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 19 | 1 18 | sylan2br |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ P Btwn <. B , C >. ) ) -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 20 | 19 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P Btwn <. B , C >. -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 21 |  | simp3 |  |-  ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 22 |  | df-3an |  |-  ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ A Btwn <. P , B >. ) ) | 
						
							| 23 |  | simpr11 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> A =/= P ) | 
						
							| 24 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> A Btwn <. P , B >. ) | 
						
							| 25 | 5 7 6 11 24 | btwncomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> A Btwn <. B , P >. ) | 
						
							| 26 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> P Btwn <. A , C >. ) | 
						
							| 27 |  | btwnouttr2 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A =/= P /\ A Btwn <. B , P >. /\ P Btwn <. A , C >. ) -> P Btwn <. B , C >. ) ) | 
						
							| 28 | 5 11 7 6 8 27 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A =/= P /\ A Btwn <. B , P >. /\ P Btwn <. A , C >. ) -> P Btwn <. B , C >. ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> ( ( A =/= P /\ A Btwn <. B , P >. /\ P Btwn <. A , C >. ) -> P Btwn <. B , C >. ) ) | 
						
							| 30 | 23 25 26 29 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ A Btwn <. P , B >. ) ) -> P Btwn <. B , C >. ) | 
						
							| 31 | 22 30 | sylan2br |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ A Btwn <. P , B >. ) ) -> P Btwn <. B , C >. ) | 
						
							| 32 | 31 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( A Btwn <. P , B >. -> P Btwn <. B , C >. ) ) | 
						
							| 33 |  | df-3an |  |-  ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ B Btwn <. P , A >. ) ) | 
						
							| 34 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> B Btwn <. P , A >. ) | 
						
							| 35 | 5 11 6 7 34 | btwncomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> B Btwn <. A , P >. ) | 
						
							| 36 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> P Btwn <. A , C >. ) | 
						
							| 37 | 5 7 11 6 8 35 36 | btwnexch3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. /\ B Btwn <. P , A >. ) ) -> P Btwn <. B , C >. ) | 
						
							| 38 | 33 37 | sylan2br |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) /\ B Btwn <. P , A >. ) ) -> P Btwn <. B , C >. ) | 
						
							| 39 | 38 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( B Btwn <. P , A >. -> P Btwn <. B , C >. ) ) | 
						
							| 40 | 32 39 | jaod |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> P Btwn <. B , C >. ) ) | 
						
							| 41 | 21 40 | syl5 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> P Btwn <. B , C >. ) ) | 
						
							| 42 | 20 41 | impbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P Btwn <. B , C >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 43 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 44 | 5 6 7 11 43 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 46 | 42 45 | bitr4d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) ) -> ( P Btwn <. B , C >. <-> P OutsideOf <. A , B >. ) ) | 
						
							| 47 | 46 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ P Btwn <. A , C >. ) -> ( P Btwn <. B , C >. <-> P OutsideOf <. A , B >. ) ) ) |