| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
cantnfp1.g |
|- ( ph -> G e. S ) |
| 5 |
|
cantnfp1.x |
|- ( ph -> X e. B ) |
| 6 |
|
cantnfp1.y |
|- ( ph -> Y e. A ) |
| 7 |
|
cantnfp1.s |
|- ( ph -> ( G supp (/) ) C_ X ) |
| 8 |
|
cantnfp1.f |
|- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
| 9 |
|
cantnfp1.e |
|- ( ph -> (/) e. Y ) |
| 10 |
|
cantnfp1.o |
|- O = OrdIso ( _E , ( F supp (/) ) ) |
| 11 |
|
iftrue |
|- ( t = X -> if ( t = X , Y , ( G ` t ) ) = Y ) |
| 12 |
8 11 5 6
|
fvmptd3 |
|- ( ph -> ( F ` X ) = Y ) |
| 13 |
9
|
ne0d |
|- ( ph -> Y =/= (/) ) |
| 14 |
12 13
|
eqnetrd |
|- ( ph -> ( F ` X ) =/= (/) ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ t e. B ) -> Y e. A ) |
| 16 |
1 2 3
|
cantnfs |
|- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 17 |
4 16
|
mpbid |
|- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 18 |
17
|
simpld |
|- ( ph -> G : B --> A ) |
| 19 |
18
|
ffvelcdmda |
|- ( ( ph /\ t e. B ) -> ( G ` t ) e. A ) |
| 20 |
15 19
|
ifcld |
|- ( ( ph /\ t e. B ) -> if ( t = X , Y , ( G ` t ) ) e. A ) |
| 21 |
20 8
|
fmptd |
|- ( ph -> F : B --> A ) |
| 22 |
21
|
ffnd |
|- ( ph -> F Fn B ) |
| 23 |
9
|
elexd |
|- ( ph -> (/) e. _V ) |
| 24 |
|
elsuppfn |
|- ( ( F Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( F supp (/) ) <-> ( X e. B /\ ( F ` X ) =/= (/) ) ) ) |
| 25 |
22 3 23 24
|
syl3anc |
|- ( ph -> ( X e. ( F supp (/) ) <-> ( X e. B /\ ( F ` X ) =/= (/) ) ) ) |
| 26 |
5 14 25
|
mpbir2and |
|- ( ph -> X e. ( F supp (/) ) ) |
| 27 |
|
n0i |
|- ( X e. ( F supp (/) ) -> -. ( F supp (/) ) = (/) ) |
| 28 |
26 27
|
syl |
|- ( ph -> -. ( F supp (/) ) = (/) ) |
| 29 |
|
ovexd |
|- ( ph -> ( F supp (/) ) e. _V ) |
| 30 |
1 2 3 4 5 6 7 8
|
cantnfp1lem1 |
|- ( ph -> F e. S ) |
| 31 |
1 2 3 10 30
|
cantnfcl |
|- ( ph -> ( _E We ( F supp (/) ) /\ dom O e. _om ) ) |
| 32 |
31
|
simpld |
|- ( ph -> _E We ( F supp (/) ) ) |
| 33 |
10
|
oien |
|- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> dom O ~~ ( F supp (/) ) ) |
| 34 |
29 32 33
|
syl2anc |
|- ( ph -> dom O ~~ ( F supp (/) ) ) |
| 35 |
|
breq1 |
|- ( dom O = (/) -> ( dom O ~~ ( F supp (/) ) <-> (/) ~~ ( F supp (/) ) ) ) |
| 36 |
|
ensymb |
|- ( (/) ~~ ( F supp (/) ) <-> ( F supp (/) ) ~~ (/) ) |
| 37 |
|
en0 |
|- ( ( F supp (/) ) ~~ (/) <-> ( F supp (/) ) = (/) ) |
| 38 |
36 37
|
bitri |
|- ( (/) ~~ ( F supp (/) ) <-> ( F supp (/) ) = (/) ) |
| 39 |
35 38
|
bitrdi |
|- ( dom O = (/) -> ( dom O ~~ ( F supp (/) ) <-> ( F supp (/) ) = (/) ) ) |
| 40 |
34 39
|
syl5ibcom |
|- ( ph -> ( dom O = (/) -> ( F supp (/) ) = (/) ) ) |
| 41 |
28 40
|
mtod |
|- ( ph -> -. dom O = (/) ) |
| 42 |
31
|
simprd |
|- ( ph -> dom O e. _om ) |
| 43 |
|
nnlim |
|- ( dom O e. _om -> -. Lim dom O ) |
| 44 |
42 43
|
syl |
|- ( ph -> -. Lim dom O ) |
| 45 |
|
ioran |
|- ( -. ( dom O = (/) \/ Lim dom O ) <-> ( -. dom O = (/) /\ -. Lim dom O ) ) |
| 46 |
41 44 45
|
sylanbrc |
|- ( ph -> -. ( dom O = (/) \/ Lim dom O ) ) |
| 47 |
|
nnord |
|- ( dom O e. _om -> Ord dom O ) |
| 48 |
|
unizlim |
|- ( Ord dom O -> ( dom O = U. dom O <-> ( dom O = (/) \/ Lim dom O ) ) ) |
| 49 |
42 47 48
|
3syl |
|- ( ph -> ( dom O = U. dom O <-> ( dom O = (/) \/ Lim dom O ) ) ) |
| 50 |
46 49
|
mtbird |
|- ( ph -> -. dom O = U. dom O ) |
| 51 |
|
orduniorsuc |
|- ( Ord dom O -> ( dom O = U. dom O \/ dom O = suc U. dom O ) ) |
| 52 |
42 47 51
|
3syl |
|- ( ph -> ( dom O = U. dom O \/ dom O = suc U. dom O ) ) |
| 53 |
52
|
ord |
|- ( ph -> ( -. dom O = U. dom O -> dom O = suc U. dom O ) ) |
| 54 |
50 53
|
mpd |
|- ( ph -> dom O = suc U. dom O ) |