| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chtppilim.1 |
|- ( ph -> A e. RR+ ) |
| 2 |
|
chtppilim.2 |
|- ( ph -> A < 1 ) |
| 3 |
|
simpr |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> x e. ( 2 [,) +oo ) ) |
| 4 |
|
2re |
|- 2 e. RR |
| 5 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
| 7 |
3 6
|
sylib |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x e. RR /\ 2 <_ x ) ) |
| 8 |
7
|
simpld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> x e. RR ) |
| 9 |
|
0red |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 0 e. RR ) |
| 10 |
4
|
a1i |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 2 e. RR ) |
| 11 |
|
2pos |
|- 0 < 2 |
| 12 |
11
|
a1i |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 0 < 2 ) |
| 13 |
7
|
simprd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 2 <_ x ) |
| 14 |
9 10 8 12 13
|
ltletrd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 0 < x ) |
| 15 |
8 14
|
elrpd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> x e. RR+ ) |
| 16 |
1
|
rpred |
|- ( ph -> A e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> A e. RR ) |
| 18 |
15 17
|
rpcxpcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x ^c A ) e. RR+ ) |
| 19 |
|
ppinncl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. NN ) |
| 20 |
7 19
|
syl |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ppi ` x ) e. NN ) |
| 21 |
20
|
nnrpd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ppi ` x ) e. RR+ ) |
| 22 |
18 21
|
rpdivcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x ^c A ) / ( ppi ` x ) ) e. RR+ ) |
| 23 |
22
|
ralrimiva |
|- ( ph -> A. x e. ( 2 [,) +oo ) ( ( x ^c A ) / ( ppi ` x ) ) e. RR+ ) |
| 24 |
|
1re |
|- 1 e. RR |
| 25 |
|
difrp |
|- ( ( A e. RR /\ 1 e. RR ) -> ( A < 1 <-> ( 1 - A ) e. RR+ ) ) |
| 26 |
16 24 25
|
sylancl |
|- ( ph -> ( A < 1 <-> ( 1 - A ) e. RR+ ) ) |
| 27 |
2 26
|
mpbid |
|- ( ph -> ( 1 - A ) e. RR+ ) |
| 28 |
|
ovexd |
|- ( ph -> ( 2 [,) +oo ) e. _V ) |
| 29 |
24
|
a1i |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 1 e. RR ) |
| 30 |
|
1lt2 |
|- 1 < 2 |
| 31 |
30
|
a1i |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 1 < 2 ) |
| 32 |
29 10 8 31 13
|
ltletrd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 1 < x ) |
| 33 |
8 32
|
rplogcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 34 |
15 33
|
rpdivcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x / ( log ` x ) ) e. RR+ ) |
| 35 |
34 21
|
rpdivcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ ) |
| 36 |
27
|
adantr |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( 1 - A ) e. RR+ ) |
| 37 |
36
|
rpred |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( 1 - A ) e. RR ) |
| 38 |
15 37
|
rpcxpcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x ^c ( 1 - A ) ) e. RR+ ) |
| 39 |
33 38
|
rpdivcld |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) e. RR+ ) |
| 40 |
|
eqidd |
|- ( ph -> ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) |
| 41 |
|
eqidd |
|- ( ph -> ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) |
| 42 |
28 35 39 40 41
|
offval2 |
|- ( ph -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) ) |
| 43 |
34
|
rpcnd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x / ( log ` x ) ) e. CC ) |
| 44 |
39
|
rpcnd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) e. CC ) |
| 45 |
21
|
rpcnne0d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ppi ` x ) e. CC /\ ( ppi ` x ) =/= 0 ) ) |
| 46 |
|
div23 |
|- ( ( ( x / ( log ` x ) ) e. CC /\ ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) e. CC /\ ( ( ppi ` x ) e. CC /\ ( ppi ` x ) =/= 0 ) ) -> ( ( ( x / ( log ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) / ( ppi ` x ) ) = ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) |
| 47 |
43 44 45 46
|
syl3anc |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ( x / ( log ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) / ( ppi ` x ) ) = ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) |
| 48 |
33
|
rpcnne0d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) e. CC /\ ( log ` x ) =/= 0 ) ) |
| 49 |
38
|
rpcnne0d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x ^c ( 1 - A ) ) e. CC /\ ( x ^c ( 1 - A ) ) =/= 0 ) ) |
| 50 |
8
|
recnd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> x e. CC ) |
| 51 |
|
dmdcan |
|- ( ( ( ( log ` x ) e. CC /\ ( log ` x ) =/= 0 ) /\ ( ( x ^c ( 1 - A ) ) e. CC /\ ( x ^c ( 1 - A ) ) =/= 0 ) /\ x e. CC ) -> ( ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) x. ( x / ( log ` x ) ) ) = ( x / ( x ^c ( 1 - A ) ) ) ) |
| 52 |
48 49 50 51
|
syl3anc |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) x. ( x / ( log ` x ) ) ) = ( x / ( x ^c ( 1 - A ) ) ) ) |
| 53 |
43 44
|
mulcomd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x / ( log ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) = ( ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) x. ( x / ( log ` x ) ) ) ) |
| 54 |
15
|
rpcnne0d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 55 |
|
ax-1cn |
|- 1 e. CC |
| 56 |
55
|
a1i |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 1 e. CC ) |
| 57 |
36
|
rpcnd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( 1 - A ) e. CC ) |
| 58 |
|
cxpsub |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ 1 e. CC /\ ( 1 - A ) e. CC ) -> ( x ^c ( 1 - ( 1 - A ) ) ) = ( ( x ^c 1 ) / ( x ^c ( 1 - A ) ) ) ) |
| 59 |
54 56 57 58
|
syl3anc |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x ^c ( 1 - ( 1 - A ) ) ) = ( ( x ^c 1 ) / ( x ^c ( 1 - A ) ) ) ) |
| 60 |
17
|
recnd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> A e. CC ) |
| 61 |
|
nncan |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - ( 1 - A ) ) = A ) |
| 62 |
55 60 61
|
sylancr |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( 1 - ( 1 - A ) ) = A ) |
| 63 |
62
|
oveq2d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x ^c ( 1 - ( 1 - A ) ) ) = ( x ^c A ) ) |
| 64 |
59 63
|
eqtr3d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x ^c 1 ) / ( x ^c ( 1 - A ) ) ) = ( x ^c A ) ) |
| 65 |
50
|
cxp1d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x ^c 1 ) = x ) |
| 66 |
65
|
oveq1d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x ^c 1 ) / ( x ^c ( 1 - A ) ) ) = ( x / ( x ^c ( 1 - A ) ) ) ) |
| 67 |
64 66
|
eqtr3d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( x ^c A ) = ( x / ( x ^c ( 1 - A ) ) ) ) |
| 68 |
52 53 67
|
3eqtr4d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x / ( log ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) = ( x ^c A ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ( x / ( log ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) / ( ppi ` x ) ) = ( ( x ^c A ) / ( ppi ` x ) ) ) |
| 70 |
47 69
|
eqtr3d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) = ( ( x ^c A ) / ( ppi ` x ) ) ) |
| 71 |
70
|
mpteq2dva |
|- ( ph -> ( x e. ( 2 [,) +oo ) |-> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) x. ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( x ^c A ) / ( ppi ` x ) ) ) ) |
| 72 |
42 71
|
eqtrd |
|- ( ph -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( x ^c A ) / ( ppi ` x ) ) ) ) |
| 73 |
|
chebbnd1 |
|- ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) e. O(1) |
| 74 |
15
|
ex |
|- ( ph -> ( x e. ( 2 [,) +oo ) -> x e. RR+ ) ) |
| 75 |
74
|
ssrdv |
|- ( ph -> ( 2 [,) +oo ) C_ RR+ ) |
| 76 |
|
cxploglim |
|- ( ( 1 - A ) e. RR+ -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ~~>r 0 ) |
| 77 |
27 76
|
syl |
|- ( ph -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ~~>r 0 ) |
| 78 |
75 77
|
rlimres2 |
|- ( ph -> ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ~~>r 0 ) |
| 79 |
|
o1rlimmul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ~~>r 0 ) -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) ~~>r 0 ) |
| 80 |
73 78 79
|
sylancr |
|- ( ph -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 - A ) ) ) ) ) ~~>r 0 ) |
| 81 |
72 80
|
eqbrtrrd |
|- ( ph -> ( x e. ( 2 [,) +oo ) |-> ( ( x ^c A ) / ( ppi ` x ) ) ) ~~>r 0 ) |
| 82 |
23 27 81
|
rlimi |
|- ( ph -> E. z e. RR A. x e. ( 2 [,) +oo ) ( z <_ x -> ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) < ( 1 - A ) ) ) |
| 83 |
22
|
rpcnd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x ^c A ) / ( ppi ` x ) ) e. CC ) |
| 84 |
83
|
subid1d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) = ( ( x ^c A ) / ( ppi ` x ) ) ) |
| 85 |
84
|
fveq2d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) = ( abs ` ( ( x ^c A ) / ( ppi ` x ) ) ) ) |
| 86 |
22
|
rpred |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( x ^c A ) / ( ppi ` x ) ) e. RR ) |
| 87 |
22
|
rpge0d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> 0 <_ ( ( x ^c A ) / ( ppi ` x ) ) ) |
| 88 |
86 87
|
absidd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( abs ` ( ( x ^c A ) / ( ppi ` x ) ) ) = ( ( x ^c A ) / ( ppi ` x ) ) ) |
| 89 |
85 88
|
eqtrd |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) = ( ( x ^c A ) / ( ppi ` x ) ) ) |
| 90 |
89
|
breq1d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) < ( 1 - A ) <-> ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) ) |
| 91 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( 2 [,) +oo ) /\ ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) ) -> A e. RR+ ) |
| 92 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( 2 [,) +oo ) /\ ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) ) -> A < 1 ) |
| 93 |
|
simprl |
|- ( ( ph /\ ( x e. ( 2 [,) +oo ) /\ ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) ) -> x e. ( 2 [,) +oo ) ) |
| 94 |
|
simprr |
|- ( ( ph /\ ( x e. ( 2 [,) +oo ) /\ ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) ) -> ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) |
| 95 |
91 92 93 94
|
chtppilimlem1 |
|- ( ( ph /\ ( x e. ( 2 [,) +oo ) /\ ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) ) ) -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) |
| 96 |
95
|
expr |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( ( x ^c A ) / ( ppi ` x ) ) < ( 1 - A ) -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) ) |
| 97 |
90 96
|
sylbid |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) < ( 1 - A ) -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) ) |
| 98 |
97
|
imim2d |
|- ( ( ph /\ x e. ( 2 [,) +oo ) ) -> ( ( z <_ x -> ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) < ( 1 - A ) ) -> ( z <_ x -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) ) ) |
| 99 |
98
|
ralimdva |
|- ( ph -> ( A. x e. ( 2 [,) +oo ) ( z <_ x -> ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) < ( 1 - A ) ) -> A. x e. ( 2 [,) +oo ) ( z <_ x -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) ) ) |
| 100 |
99
|
reximdv |
|- ( ph -> ( E. z e. RR A. x e. ( 2 [,) +oo ) ( z <_ x -> ( abs ` ( ( ( x ^c A ) / ( ppi ` x ) ) - 0 ) ) < ( 1 - A ) ) -> E. z e. RR A. x e. ( 2 [,) +oo ) ( z <_ x -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) ) ) |
| 101 |
82 100
|
mpd |
|- ( ph -> E. z e. RR A. x e. ( 2 [,) +oo ) ( z <_ x -> ( ( A ^ 2 ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) < ( theta ` x ) ) ) |