| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncficcgt0.f |
|- F = ( x e. ( A [,] B ) |-> C ) |
| 2 |
|
cncficcgt0.a |
|- ( ph -> A e. RR ) |
| 3 |
|
cncficcgt0.b |
|- ( ph -> B e. RR ) |
| 4 |
|
cncficcgt0.aleb |
|- ( ph -> A <_ B ) |
| 5 |
|
cncficcgt0.fcn |
|- ( ph -> F e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) ) |
| 6 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) -> F : ( A [,] B ) --> ( RR \ { 0 } ) ) |
| 7 |
|
ffun |
|- ( F : ( A [,] B ) --> ( RR \ { 0 } ) -> Fun F ) |
| 8 |
5 6 7
|
3syl |
|- ( ph -> Fun F ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ c e. ( A [,] B ) ) -> Fun F ) |
| 10 |
|
simpr |
|- ( ( ph /\ c e. ( A [,] B ) ) -> c e. ( A [,] B ) ) |
| 11 |
5 6
|
syl |
|- ( ph -> F : ( A [,] B ) --> ( RR \ { 0 } ) ) |
| 12 |
11
|
fdmd |
|- ( ph -> dom F = ( A [,] B ) ) |
| 13 |
12
|
eqcomd |
|- ( ph -> ( A [,] B ) = dom F ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 15 |
10 14
|
eleqtrd |
|- ( ( ph /\ c e. ( A [,] B ) ) -> c e. dom F ) |
| 16 |
|
fvco |
|- ( ( Fun F /\ c e. dom F ) -> ( ( abs o. F ) ` c ) = ( abs ` ( F ` c ) ) ) |
| 17 |
9 15 16
|
syl2anc |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) = ( abs ` ( F ` c ) ) ) |
| 18 |
11
|
ffvelcdmda |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) e. ( RR \ { 0 } ) ) |
| 19 |
18
|
eldifad |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) e. RR ) |
| 20 |
19
|
recnd |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) e. CC ) |
| 21 |
|
eldifsni |
|- ( ( F ` c ) e. ( RR \ { 0 } ) -> ( F ` c ) =/= 0 ) |
| 22 |
18 21
|
syl |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) =/= 0 ) |
| 23 |
20 22
|
absrpcld |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( abs ` ( F ` c ) ) e. RR+ ) |
| 24 |
17 23
|
eqeltrd |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) e. RR+ ) |
| 25 |
24
|
adantr |
|- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> ( ( abs o. F ) ` c ) e. RR+ ) |
| 26 |
|
nfv |
|- F/ x ( ph /\ c e. ( A [,] B ) ) |
| 27 |
|
nfcv |
|- F/_ x ( A [,] B ) |
| 28 |
|
nfcv |
|- F/_ x abs |
| 29 |
|
nfmpt1 |
|- F/_ x ( x e. ( A [,] B ) |-> C ) |
| 30 |
1 29
|
nfcxfr |
|- F/_ x F |
| 31 |
28 30
|
nfco |
|- F/_ x ( abs o. F ) |
| 32 |
|
nfcv |
|- F/_ x c |
| 33 |
31 32
|
nffv |
|- F/_ x ( ( abs o. F ) ` c ) |
| 34 |
|
nfcv |
|- F/_ x <_ |
| 35 |
|
nfcv |
|- F/_ x d |
| 36 |
31 35
|
nffv |
|- F/_ x ( ( abs o. F ) ` d ) |
| 37 |
33 34 36
|
nfbr |
|- F/ x ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) |
| 38 |
27 37
|
nfralw |
|- F/ x A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) |
| 39 |
26 38
|
nfan |
|- F/ x ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) |
| 40 |
|
fveq2 |
|- ( d = x -> ( ( abs o. F ) ` d ) = ( ( abs o. F ) ` x ) ) |
| 41 |
40
|
breq2d |
|- ( d = x -> ( ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) <-> ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` x ) ) ) |
| 42 |
41
|
rspccva |
|- ( ( A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` x ) ) |
| 43 |
42
|
adantll |
|- ( ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` x ) ) |
| 44 |
|
absf |
|- abs : CC --> RR |
| 45 |
44
|
a1i |
|- ( ph -> abs : CC --> RR ) |
| 46 |
|
difss |
|- ( RR \ { 0 } ) C_ RR |
| 47 |
|
ax-resscn |
|- RR C_ CC |
| 48 |
46 47
|
sstri |
|- ( RR \ { 0 } ) C_ CC |
| 49 |
48
|
a1i |
|- ( ph -> ( RR \ { 0 } ) C_ CC ) |
| 50 |
11 49
|
fssd |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 51 |
|
fcompt |
|- ( ( abs : CC --> RR /\ F : ( A [,] B ) --> CC ) -> ( abs o. F ) = ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) ) |
| 52 |
45 50 51
|
syl2anc |
|- ( ph -> ( abs o. F ) = ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) ) |
| 53 |
|
nfcv |
|- F/_ x z |
| 54 |
30 53
|
nffv |
|- F/_ x ( F ` z ) |
| 55 |
28 54
|
nffv |
|- F/_ x ( abs ` ( F ` z ) ) |
| 56 |
|
nfcv |
|- F/_ z ( abs ` ( F ` x ) ) |
| 57 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
| 58 |
57
|
fveq2d |
|- ( z = x -> ( abs ` ( F ` z ) ) = ( abs ` ( F ` x ) ) ) |
| 59 |
55 56 58
|
cbvmpt |
|- ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) = ( x e. ( A [,] B ) |-> ( abs ` ( F ` x ) ) ) |
| 60 |
59
|
a1i |
|- ( ph -> ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) = ( x e. ( A [,] B ) |-> ( abs ` ( F ` x ) ) ) ) |
| 61 |
1
|
a1i |
|- ( ph -> F = ( x e. ( A [,] B ) |-> C ) ) |
| 62 |
61 11
|
feq1dd |
|- ( ph -> ( x e. ( A [,] B ) |-> C ) : ( A [,] B ) --> ( RR \ { 0 } ) ) |
| 63 |
62
|
fvmptelcdm |
|- ( ( ph /\ x e. ( A [,] B ) ) -> C e. ( RR \ { 0 } ) ) |
| 64 |
61 63
|
fvmpt2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) = C ) |
| 65 |
64
|
fveq2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( F ` x ) ) = ( abs ` C ) ) |
| 66 |
65
|
mpteq2dva |
|- ( ph -> ( x e. ( A [,] B ) |-> ( abs ` ( F ` x ) ) ) = ( x e. ( A [,] B ) |-> ( abs ` C ) ) ) |
| 67 |
52 60 66
|
3eqtrd |
|- ( ph -> ( abs o. F ) = ( x e. ( A [,] B ) |-> ( abs ` C ) ) ) |
| 68 |
48 63
|
sselid |
|- ( ( ph /\ x e. ( A [,] B ) ) -> C e. CC ) |
| 69 |
68
|
abscld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` C ) e. RR ) |
| 70 |
67 69
|
fvmpt2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` C ) ) |
| 71 |
70
|
ad4ant14 |
|- ( ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` C ) ) |
| 72 |
43 71
|
breqtrd |
|- ( ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) |
| 73 |
72
|
ex |
|- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> ( x e. ( A [,] B ) -> ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) ) |
| 74 |
39 73
|
ralrimi |
|- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> A. x e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) |
| 75 |
33
|
nfeq2 |
|- F/ x y = ( ( abs o. F ) ` c ) |
| 76 |
|
breq1 |
|- ( y = ( ( abs o. F ) ` c ) -> ( y <_ ( abs ` C ) <-> ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) ) |
| 77 |
75 76
|
ralbid |
|- ( y = ( ( abs o. F ) ` c ) -> ( A. x e. ( A [,] B ) y <_ ( abs ` C ) <-> A. x e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) ) |
| 78 |
77
|
rspcev |
|- ( ( ( ( abs o. F ) ` c ) e. RR+ /\ A. x e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |
| 79 |
25 74 78
|
syl2anc |
|- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |
| 80 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 81 |
|
cncfss |
|- ( ( ( RR \ { 0 } ) C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) C_ ( ( A [,] B ) -cn-> CC ) ) |
| 82 |
49 80 81
|
syl2anc |
|- ( ph -> ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) C_ ( ( A [,] B ) -cn-> CC ) ) |
| 83 |
82 5
|
sseldd |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 84 |
|
abscncf |
|- abs e. ( CC -cn-> RR ) |
| 85 |
84
|
a1i |
|- ( ph -> abs e. ( CC -cn-> RR ) ) |
| 86 |
83 85
|
cncfco |
|- ( ph -> ( abs o. F ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 87 |
2 3 4 86
|
evthicc |
|- ( ph -> ( E. a e. ( A [,] B ) A. b e. ( A [,] B ) ( ( abs o. F ) ` b ) <_ ( ( abs o. F ) ` a ) /\ E. c e. ( A [,] B ) A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) ) |
| 88 |
87
|
simprd |
|- ( ph -> E. c e. ( A [,] B ) A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) |
| 89 |
79 88
|
r19.29a |
|- ( ph -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |