| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncficcgt0.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) |
| 2 |
|
cncficcgt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
cncficcgt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
cncficcgt0.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
cncficcgt0.fcn |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ) |
| 6 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
| 7 |
|
ffun |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) → Fun 𝐹 ) |
| 8 |
5 6 7
|
3syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 11 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
| 12 |
11
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 15 |
10 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑐 ∈ dom 𝐹 ) |
| 16 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) = ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 17 |
9 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) = ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 18 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 19 |
18
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
| 21 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ℝ ∖ { 0 } ) → ( 𝐹 ‘ 𝑐 ) ≠ 0 ) |
| 22 |
18 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ≠ 0 ) |
| 23 |
20 22
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ ℝ+ ) |
| 24 |
17 23
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ) |
| 26 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐴 [,] 𝐵 ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑥 abs |
| 29 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) |
| 30 |
1 29
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 31 |
28 30
|
nfco |
⊢ Ⅎ 𝑥 ( abs ∘ 𝐹 ) |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
| 33 |
31 32
|
nffv |
⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑑 |
| 36 |
31 35
|
nffv |
⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
| 37 |
33 34 36
|
nfbr |
⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
| 38 |
27 37
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
| 39 |
26 38
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑑 = 𝑥 → ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) = ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑑 = 𝑥 → ( ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ↔ ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 42 |
41
|
rspccva |
⊢ ( ( ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 43 |
42
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 44 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 46 |
|
difss |
⊢ ( ℝ ∖ { 0 } ) ⊆ ℝ |
| 47 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 48 |
46 47
|
sstri |
⊢ ( ℝ ∖ { 0 } ) ⊆ ℂ |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → ( ℝ ∖ { 0 } ) ⊆ ℂ ) |
| 50 |
11 49
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 51 |
|
fcompt |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) → ( abs ∘ 𝐹 ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 52 |
45 50 51
|
syl2anc |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 54 |
30 53
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 55 |
28 54
|
nffv |
⊢ Ⅎ 𝑥 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑧 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝑧 = 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 59 |
55 56 58
|
cbvmpt |
⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 61 |
1
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ) |
| 62 |
61 11
|
feq1dd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
| 63 |
62
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ( ℝ ∖ { 0 } ) ) |
| 64 |
61 63
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 65 |
64
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ 𝐶 ) ) |
| 66 |
65
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ 𝐶 ) ) ) |
| 67 |
52 60 66
|
3eqtrd |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ 𝐶 ) ) ) |
| 68 |
48 63
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 69 |
68
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 70 |
67 69
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ 𝐶 ) ) |
| 71 |
70
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ 𝐶 ) ) |
| 72 |
43 71
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) |
| 73 |
72
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
| 74 |
39 73
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) |
| 75 |
33
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) |
| 76 |
|
breq1 |
⊢ ( 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) → ( 𝑦 ≤ ( abs ‘ 𝐶 ) ↔ ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
| 77 |
75 76
|
ralbid |
⊢ ( 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
| 78 |
77
|
rspcev |
⊢ ( ( ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
| 79 |
25 74 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
| 80 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 81 |
|
cncfss |
⊢ ( ( ( ℝ ∖ { 0 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 82 |
49 80 81
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 83 |
82 5
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 84 |
|
abscncf |
⊢ abs ∈ ( ℂ –cn→ ℝ ) |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℝ ) ) |
| 86 |
83 85
|
cncfco |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 87 |
2 3 4 86
|
evthicc |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑏 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑎 ) ∧ ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 88 |
87
|
simprd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) |
| 89 |
79 88
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |