| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac12.1 |
|- ( ph -> A e. On ) |
| 2 |
|
dfac12.3 |
|- ( ph -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On ) |
| 3 |
|
dfac12.4 |
|- G = recs ( ( x e. _V |-> ( y e. ( R1 ` dom x ) |-> if ( dom x = U. dom x , ( ( suc U. ran U. ran x .o ( rank ` y ) ) +o ( ( x ` suc ( rank ` y ) ) ` y ) ) , ( F ` ( ( `' OrdIso ( _E , ran ( x ` U. dom x ) ) o. ( x ` U. dom x ) ) " y ) ) ) ) ) ) |
| 4 |
|
fvex |
|- ( G ` A ) e. _V |
| 5 |
4
|
rnex |
|- ran ( G ` A ) e. _V |
| 6 |
|
ssid |
|- A C_ A |
| 7 |
|
sseq1 |
|- ( m = n -> ( m C_ A <-> n C_ A ) ) |
| 8 |
|
fveq2 |
|- ( m = n -> ( G ` m ) = ( G ` n ) ) |
| 9 |
|
f1eq1 |
|- ( ( G ` m ) = ( G ` n ) -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` m ) -1-1-> On ) ) |
| 10 |
8 9
|
syl |
|- ( m = n -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` m ) -1-1-> On ) ) |
| 11 |
|
fveq2 |
|- ( m = n -> ( R1 ` m ) = ( R1 ` n ) ) |
| 12 |
|
f1eq2 |
|- ( ( R1 ` m ) = ( R1 ` n ) -> ( ( G ` n ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 13 |
11 12
|
syl |
|- ( m = n -> ( ( G ` n ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 14 |
10 13
|
bitrd |
|- ( m = n -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 15 |
7 14
|
imbi12d |
|- ( m = n -> ( ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) <-> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) |
| 16 |
15
|
imbi2d |
|- ( m = n -> ( ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) <-> ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) ) |
| 17 |
|
sseq1 |
|- ( m = A -> ( m C_ A <-> A C_ A ) ) |
| 18 |
|
fveq2 |
|- ( m = A -> ( G ` m ) = ( G ` A ) ) |
| 19 |
|
f1eq1 |
|- ( ( G ` m ) = ( G ` A ) -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` m ) -1-1-> On ) ) |
| 20 |
18 19
|
syl |
|- ( m = A -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` m ) -1-1-> On ) ) |
| 21 |
|
fveq2 |
|- ( m = A -> ( R1 ` m ) = ( R1 ` A ) ) |
| 22 |
|
f1eq2 |
|- ( ( R1 ` m ) = ( R1 ` A ) -> ( ( G ` A ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 23 |
21 22
|
syl |
|- ( m = A -> ( ( G ` A ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 24 |
20 23
|
bitrd |
|- ( m = A -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 25 |
17 24
|
imbi12d |
|- ( m = A -> ( ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) <-> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) |
| 26 |
25
|
imbi2d |
|- ( m = A -> ( ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) <-> ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) ) |
| 27 |
|
r19.21v |
|- ( A. n e. m ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) <-> ( ph -> A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) |
| 28 |
|
eloni |
|- ( m e. On -> Ord m ) |
| 29 |
28
|
ad2antrl |
|- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> Ord m ) |
| 30 |
|
ordelss |
|- ( ( Ord m /\ n e. m ) -> n C_ m ) |
| 31 |
29 30
|
sylan |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> n C_ m ) |
| 32 |
|
simplrr |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> m C_ A ) |
| 33 |
31 32
|
sstrd |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> n C_ A ) |
| 34 |
|
pm5.5 |
|- ( n C_ A -> ( ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 35 |
33 34
|
syl |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> ( ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 36 |
35
|
ralbidva |
|- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 37 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A e. On ) |
| 38 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On ) |
| 39 |
|
simplrl |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> m e. On ) |
| 40 |
|
eqid |
|- ( `' OrdIso ( _E , ran ( G ` U. m ) ) o. ( G ` U. m ) ) = ( `' OrdIso ( _E , ran ( G ` U. m ) ) o. ( G ` U. m ) ) |
| 41 |
|
simplrr |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> m C_ A ) |
| 42 |
|
simpr |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) |
| 43 |
|
fveq2 |
|- ( n = z -> ( G ` n ) = ( G ` z ) ) |
| 44 |
|
f1eq1 |
|- ( ( G ` n ) = ( G ` z ) -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` n ) -1-1-> On ) ) |
| 45 |
43 44
|
syl |
|- ( n = z -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` n ) -1-1-> On ) ) |
| 46 |
|
fveq2 |
|- ( n = z -> ( R1 ` n ) = ( R1 ` z ) ) |
| 47 |
|
f1eq2 |
|- ( ( R1 ` n ) = ( R1 ` z ) -> ( ( G ` z ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) ) |
| 48 |
46 47
|
syl |
|- ( n = z -> ( ( G ` z ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) ) |
| 49 |
45 48
|
bitrd |
|- ( n = z -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) ) |
| 50 |
49
|
cbvralvw |
|- ( A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On <-> A. z e. m ( G ` z ) : ( R1 ` z ) -1-1-> On ) |
| 51 |
42 50
|
sylib |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A. z e. m ( G ` z ) : ( R1 ` z ) -1-1-> On ) |
| 52 |
37 38 3 39 40 41 51
|
dfac12lem2 |
|- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) |
| 53 |
52
|
ex |
|- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) |
| 54 |
36 53
|
sylbid |
|- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) |
| 55 |
54
|
expr |
|- ( ( ph /\ m e. On ) -> ( m C_ A -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) |
| 56 |
55
|
com23 |
|- ( ( ph /\ m e. On ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) |
| 57 |
56
|
expcom |
|- ( m e. On -> ( ph -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) ) |
| 58 |
57
|
a2d |
|- ( m e. On -> ( ( ph -> A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) -> ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) ) |
| 59 |
27 58
|
biimtrid |
|- ( m e. On -> ( A. n e. m ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) -> ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) ) |
| 60 |
16 26 59
|
tfis3 |
|- ( A e. On -> ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) |
| 61 |
1 60
|
mpcom |
|- ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 62 |
6 61
|
mpi |
|- ( ph -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) |
| 63 |
|
f1f |
|- ( ( G ` A ) : ( R1 ` A ) -1-1-> On -> ( G ` A ) : ( R1 ` A ) --> On ) |
| 64 |
|
frn |
|- ( ( G ` A ) : ( R1 ` A ) --> On -> ran ( G ` A ) C_ On ) |
| 65 |
62 63 64
|
3syl |
|- ( ph -> ran ( G ` A ) C_ On ) |
| 66 |
|
onssnum |
|- ( ( ran ( G ` A ) e. _V /\ ran ( G ` A ) C_ On ) -> ran ( G ` A ) e. dom card ) |
| 67 |
5 65 66
|
sylancr |
|- ( ph -> ran ( G ` A ) e. dom card ) |
| 68 |
|
f1f1orn |
|- ( ( G ` A ) : ( R1 ` A ) -1-1-> On -> ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) ) |
| 69 |
62 68
|
syl |
|- ( ph -> ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) ) |
| 70 |
|
fvex |
|- ( R1 ` A ) e. _V |
| 71 |
70
|
f1oen |
|- ( ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) -> ( R1 ` A ) ~~ ran ( G ` A ) ) |
| 72 |
|
ennum |
|- ( ( R1 ` A ) ~~ ran ( G ` A ) -> ( ( R1 ` A ) e. dom card <-> ran ( G ` A ) e. dom card ) ) |
| 73 |
69 71 72
|
3syl |
|- ( ph -> ( ( R1 ` A ) e. dom card <-> ran ( G ` A ) e. dom card ) ) |
| 74 |
67 73
|
mpbird |
|- ( ph -> ( R1 ` A ) e. dom card ) |