| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erelem1.1 |
|- F = ( n e. NN |-> ( 2 x. ( ( 1 / 2 ) ^ n ) ) ) |
| 2 |
|
erelem1.2 |
|- G = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
| 3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 4 |
|
0nn0 |
|- 0 e. NN0 |
| 5 |
4
|
a1i |
|- ( T. -> 0 e. NN0 ) |
| 6 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 7 |
|
0z |
|- 0 e. ZZ |
| 8 |
|
fveq2 |
|- ( n = 0 -> ( ! ` n ) = ( ! ` 0 ) ) |
| 9 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 10 |
8 9
|
eqtrdi |
|- ( n = 0 -> ( ! ` n ) = 1 ) |
| 11 |
10
|
oveq2d |
|- ( n = 0 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) |
| 12 |
|
ax-1cn |
|- 1 e. CC |
| 13 |
12
|
div1i |
|- ( 1 / 1 ) = 1 |
| 14 |
11 13
|
eqtrdi |
|- ( n = 0 -> ( 1 / ( ! ` n ) ) = 1 ) |
| 15 |
|
1ex |
|- 1 e. _V |
| 16 |
14 2 15
|
fvmpt |
|- ( 0 e. NN0 -> ( G ` 0 ) = 1 ) |
| 17 |
4 16
|
mp1i |
|- ( T. -> ( G ` 0 ) = 1 ) |
| 18 |
7 17
|
seq1i |
|- ( T. -> ( seq 0 ( + , G ) ` 0 ) = 1 ) |
| 19 |
|
1nn0 |
|- 1 e. NN0 |
| 20 |
|
fveq2 |
|- ( n = 1 -> ( ! ` n ) = ( ! ` 1 ) ) |
| 21 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
| 22 |
20 21
|
eqtrdi |
|- ( n = 1 -> ( ! ` n ) = 1 ) |
| 23 |
22
|
oveq2d |
|- ( n = 1 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) |
| 24 |
23 13
|
eqtrdi |
|- ( n = 1 -> ( 1 / ( ! ` n ) ) = 1 ) |
| 25 |
24 2 15
|
fvmpt |
|- ( 1 e. NN0 -> ( G ` 1 ) = 1 ) |
| 26 |
19 25
|
mp1i |
|- ( T. -> ( G ` 1 ) = 1 ) |
| 27 |
3 5 6 18 26
|
seqp1d |
|- ( T. -> ( seq 0 ( + , G ) ` 1 ) = ( 1 + 1 ) ) |
| 28 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 29 |
27 28
|
eqtr4di |
|- ( T. -> ( seq 0 ( + , G ) ` 1 ) = 2 ) |
| 30 |
19
|
a1i |
|- ( T. -> 1 e. NN0 ) |
| 31 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
| 32 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
| 33 |
31 32
|
syl |
|- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 34 |
33
|
oveq1d |
|- ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) |
| 35 |
34
|
mpteq2ia |
|- ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
| 36 |
2 35
|
eqtr4i |
|- G = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
| 37 |
36
|
efcvg |
|- ( 1 e. CC -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) |
| 38 |
12 37
|
mp1i |
|- ( T. -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) |
| 39 |
|
df-e |
|- _e = ( exp ` 1 ) |
| 40 |
38 39
|
breqtrrdi |
|- ( T. -> seq 0 ( + , G ) ~~> _e ) |
| 41 |
|
fveq2 |
|- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
| 42 |
41
|
oveq2d |
|- ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) |
| 43 |
|
ovex |
|- ( 1 / ( ! ` k ) ) e. _V |
| 44 |
42 2 43
|
fvmpt |
|- ( k e. NN0 -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
| 45 |
44
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
| 46 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
| 47 |
46
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 48 |
47
|
nnrecred |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR ) |
| 49 |
45 48
|
eqeltrd |
|- ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. RR ) |
| 50 |
47
|
nnred |
|- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
| 51 |
47
|
nngt0d |
|- ( ( T. /\ k e. NN0 ) -> 0 < ( ! ` k ) ) |
| 52 |
|
1re |
|- 1 e. RR |
| 53 |
|
0le1 |
|- 0 <_ 1 |
| 54 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
| 55 |
52 53 54
|
mpanl12 |
|- ( ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
| 56 |
50 51 55
|
syl2anc |
|- ( ( T. /\ k e. NN0 ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
| 57 |
56 45
|
breqtrrd |
|- ( ( T. /\ k e. NN0 ) -> 0 <_ ( G ` k ) ) |
| 58 |
3 30 40 49 57
|
climserle |
|- ( T. -> ( seq 0 ( + , G ) ` 1 ) <_ _e ) |
| 59 |
29 58
|
eqbrtrrd |
|- ( T. -> 2 <_ _e ) |
| 60 |
59
|
mptru |
|- 2 <_ _e |
| 61 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 62 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 63 |
49
|
recnd |
|- ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 64 |
3 5 63 40
|
clim2ser |
|- ( T. -> seq ( 0 + 1 ) ( + , G ) ~~> ( _e - ( seq 0 ( + , G ) ` 0 ) ) ) |
| 65 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 66 |
|
seqeq1 |
|- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) ) |
| 67 |
65 66
|
ax-mp |
|- seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) |
| 68 |
18
|
mptru |
|- ( seq 0 ( + , G ) ` 0 ) = 1 |
| 69 |
68
|
oveq2i |
|- ( _e - ( seq 0 ( + , G ) ` 0 ) ) = ( _e - 1 ) |
| 70 |
64 67 69
|
3brtr3g |
|- ( T. -> seq 1 ( + , G ) ~~> ( _e - 1 ) ) |
| 71 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 72 |
|
oveq2 |
|- ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) |
| 73 |
|
eqid |
|- ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
| 74 |
|
ovex |
|- ( ( 1 / 2 ) ^ k ) e. _V |
| 75 |
72 73 74
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 76 |
75
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 77 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 78 |
|
simpr |
|- ( ( T. /\ k e. NN0 ) -> k e. NN0 ) |
| 79 |
|
reexpcl |
|- ( ( ( 1 / 2 ) e. RR /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 80 |
77 78 79
|
sylancr |
|- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 81 |
80
|
recnd |
|- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. CC ) |
| 82 |
76 81
|
eqeltrd |
|- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) |
| 83 |
|
1lt2 |
|- 1 < 2 |
| 84 |
|
2re |
|- 2 e. RR |
| 85 |
|
0le2 |
|- 0 <_ 2 |
| 86 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
| 87 |
84 85 86
|
mp2an |
|- ( abs ` 2 ) = 2 |
| 88 |
83 87
|
breqtrri |
|- 1 < ( abs ` 2 ) |
| 89 |
88
|
a1i |
|- ( T. -> 1 < ( abs ` 2 ) ) |
| 90 |
71 89 76
|
georeclim |
|- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 / ( 2 - 1 ) ) ) |
| 91 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 92 |
91
|
oveq2i |
|- ( 2 / ( 2 - 1 ) ) = ( 2 / 1 ) |
| 93 |
|
2cn |
|- 2 e. CC |
| 94 |
93
|
div1i |
|- ( 2 / 1 ) = 2 |
| 95 |
92 94
|
eqtri |
|- ( 2 / ( 2 - 1 ) ) = 2 |
| 96 |
90 95
|
breqtrdi |
|- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 2 ) |
| 97 |
3 5 82 96
|
clim2ser |
|- ( T. -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) ) |
| 98 |
|
seqeq1 |
|- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ) |
| 99 |
65 98
|
ax-mp |
|- seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) |
| 100 |
|
oveq2 |
|- ( n = 0 -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ 0 ) ) |
| 101 |
|
ovex |
|- ( ( 1 / 2 ) ^ 0 ) e. _V |
| 102 |
100 73 101
|
fvmpt |
|- ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) ) |
| 103 |
4 102
|
ax-mp |
|- ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) |
| 104 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 105 |
|
exp0 |
|- ( ( 1 / 2 ) e. CC -> ( ( 1 / 2 ) ^ 0 ) = 1 ) |
| 106 |
104 105
|
ax-mp |
|- ( ( 1 / 2 ) ^ 0 ) = 1 |
| 107 |
103 106
|
eqtri |
|- ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 |
| 108 |
107
|
a1i |
|- ( T. -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 ) |
| 109 |
7 108
|
seq1i |
|- ( T. -> ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 ) |
| 110 |
109
|
mptru |
|- ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 |
| 111 |
110
|
oveq2i |
|- ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = ( 2 - 1 ) |
| 112 |
111 91
|
eqtri |
|- ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = 1 |
| 113 |
97 99 112
|
3brtr3g |
|- ( T. -> seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 1 ) |
| 114 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 115 |
114 82
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) |
| 116 |
72
|
oveq2d |
|- ( n = k -> ( 2 x. ( ( 1 / 2 ) ^ n ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 117 |
|
ovex |
|- ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. _V |
| 118 |
116 1 117
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 119 |
118
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 120 |
114 76
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 121 |
120
|
oveq2d |
|- ( ( T. /\ k e. NN ) -> ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 122 |
119 121
|
eqtr4d |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) ) |
| 123 |
61 62 71 113 115 122
|
isermulc2 |
|- ( T. -> seq 1 ( + , F ) ~~> ( 2 x. 1 ) ) |
| 124 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 125 |
123 124
|
breqtrdi |
|- ( T. -> seq 1 ( + , F ) ~~> 2 ) |
| 126 |
114 49
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 127 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
| 128 |
84 80 127
|
sylancr |
|- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
| 129 |
114 128
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
| 130 |
119 129
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 131 |
|
faclbnd2 |
|- ( k e. NN0 -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) |
| 132 |
131
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) |
| 133 |
|
2nn |
|- 2 e. NN |
| 134 |
|
nnexpcl |
|- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
| 135 |
133 78 134
|
sylancr |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
| 136 |
135
|
nnrpd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. RR+ ) |
| 137 |
136
|
rphalfcld |
|- ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) e. RR+ ) |
| 138 |
47
|
nnrpd |
|- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) |
| 139 |
137 138
|
lerecd |
|- ( ( T. /\ k e. NN0 ) -> ( ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) <-> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) ) |
| 140 |
132 139
|
mpbid |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) |
| 141 |
|
2cnd |
|- ( ( T. /\ k e. NN0 ) -> 2 e. CC ) |
| 142 |
135
|
nncnd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. CC ) |
| 143 |
135
|
nnne0d |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) =/= 0 ) |
| 144 |
141 142 143
|
divrecd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 / ( 2 ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 145 |
|
2ne0 |
|- 2 =/= 0 |
| 146 |
|
recdiv |
|- ( ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
| 147 |
93 145 146
|
mpanr12 |
|- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
| 148 |
142 143 147
|
syl2anc |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
| 149 |
145
|
a1i |
|- ( ( T. /\ k e. NN0 ) -> 2 =/= 0 ) |
| 150 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 151 |
150
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> k e. ZZ ) |
| 152 |
141 149 151
|
exprecd |
|- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) |
| 153 |
152
|
oveq2d |
|- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 154 |
144 148 153
|
3eqtr4rd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 1 / ( ( 2 ^ k ) / 2 ) ) ) |
| 155 |
140 154
|
breqtrrd |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 156 |
114 155
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 157 |
114 45
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
| 158 |
156 157 119
|
3brtr4d |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) |
| 159 |
61 62 70 125 126 130 158
|
iserle |
|- ( T. -> ( _e - 1 ) <_ 2 ) |
| 160 |
159
|
mptru |
|- ( _e - 1 ) <_ 2 |
| 161 |
|
ere |
|- _e e. RR |
| 162 |
161 52 84
|
lesubaddi |
|- ( ( _e - 1 ) <_ 2 <-> _e <_ ( 2 + 1 ) ) |
| 163 |
160 162
|
mpbi |
|- _e <_ ( 2 + 1 ) |
| 164 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 165 |
163 164
|
breqtrri |
|- _e <_ 3 |
| 166 |
60 165
|
pm3.2i |
|- ( 2 <_ _e /\ _e <_ 3 ) |