Step |
Hyp |
Ref |
Expression |
1 |
|
fargshift.g |
|- G = ( x e. ( 0 ..^ ( # ` F ) ) |-> ( F ` ( x + 1 ) ) ) |
2 |
|
fof |
|- ( F : ( 1 ... N ) -onto-> dom E -> F : ( 1 ... N ) --> dom E ) |
3 |
1
|
fargshiftf |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> G : ( 0 ..^ ( # ` F ) ) --> dom E ) |
4 |
2 3
|
sylan2 |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> G : ( 0 ..^ ( # ` F ) ) --> dom E ) |
5 |
1
|
rnmpt |
|- ran G = { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } |
6 |
|
fofn |
|- ( F : ( 1 ... N ) -onto-> dom E -> F Fn ( 1 ... N ) ) |
7 |
|
fnrnfv |
|- ( F Fn ( 1 ... N ) -> ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } ) |
8 |
6 7
|
syl |
|- ( F : ( 1 ... N ) -onto-> dom E -> ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } ) |
9 |
8
|
adantl |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } ) |
10 |
|
df-fo |
|- ( F : ( 1 ... N ) -onto-> dom E <-> ( F Fn ( 1 ... N ) /\ ran F = dom E ) ) |
11 |
10
|
biimpi |
|- ( F : ( 1 ... N ) -onto-> dom E -> ( F Fn ( 1 ... N ) /\ ran F = dom E ) ) |
12 |
11
|
adantl |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( F Fn ( 1 ... N ) /\ ran F = dom E ) ) |
13 |
|
eqeq1 |
|- ( ran F = dom E -> ( ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } <-> dom E = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } ) ) |
14 |
|
eqcom |
|- ( dom E = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } <-> { y | E. z e. ( 1 ... N ) y = ( F ` z ) } = dom E ) |
15 |
13 14
|
bitrdi |
|- ( ran F = dom E -> ( ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } <-> { y | E. z e. ( 1 ... N ) y = ( F ` z ) } = dom E ) ) |
16 |
|
ffn |
|- ( F : ( 1 ... N ) --> dom E -> F Fn ( 1 ... N ) ) |
17 |
|
fseq1hash |
|- ( ( N e. NN0 /\ F Fn ( 1 ... N ) ) -> ( # ` F ) = N ) |
18 |
16 17
|
sylan2 |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> ( # ` F ) = N ) |
19 |
2 18
|
sylan2 |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( # ` F ) = N ) |
20 |
|
fz0add1fz1 |
|- ( ( N e. NN0 /\ x e. ( 0 ..^ N ) ) -> ( x + 1 ) e. ( 1 ... N ) ) |
21 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
22 |
|
fzval3 |
|- ( N e. ZZ -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
23 |
21 22
|
syl |
|- ( N e. NN0 -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
24 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
25 |
|
1cnd |
|- ( N e. NN0 -> 1 e. CC ) |
26 |
24 25
|
addcomd |
|- ( N e. NN0 -> ( N + 1 ) = ( 1 + N ) ) |
27 |
26
|
oveq2d |
|- ( N e. NN0 -> ( 1 ..^ ( N + 1 ) ) = ( 1 ..^ ( 1 + N ) ) ) |
28 |
23 27
|
eqtrd |
|- ( N e. NN0 -> ( 1 ... N ) = ( 1 ..^ ( 1 + N ) ) ) |
29 |
28
|
eleq2d |
|- ( N e. NN0 -> ( z e. ( 1 ... N ) <-> z e. ( 1 ..^ ( 1 + N ) ) ) ) |
30 |
29
|
biimpa |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> z e. ( 1 ..^ ( 1 + N ) ) ) |
31 |
21
|
adantr |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> N e. ZZ ) |
32 |
|
fzosubel3 |
|- ( ( z e. ( 1 ..^ ( 1 + N ) ) /\ N e. ZZ ) -> ( z - 1 ) e. ( 0 ..^ N ) ) |
33 |
30 31 32
|
syl2anc |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> ( z - 1 ) e. ( 0 ..^ N ) ) |
34 |
|
oveq1 |
|- ( x = ( z - 1 ) -> ( x + 1 ) = ( ( z - 1 ) + 1 ) ) |
35 |
34
|
eqeq2d |
|- ( x = ( z - 1 ) -> ( z = ( x + 1 ) <-> z = ( ( z - 1 ) + 1 ) ) ) |
36 |
35
|
adantl |
|- ( ( ( N e. NN0 /\ z e. ( 1 ... N ) ) /\ x = ( z - 1 ) ) -> ( z = ( x + 1 ) <-> z = ( ( z - 1 ) + 1 ) ) ) |
37 |
|
elfzelz |
|- ( z e. ( 1 ... N ) -> z e. ZZ ) |
38 |
37
|
zcnd |
|- ( z e. ( 1 ... N ) -> z e. CC ) |
39 |
38
|
adantl |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> z e. CC ) |
40 |
|
1cnd |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> 1 e. CC ) |
41 |
39 40
|
npcand |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> ( ( z - 1 ) + 1 ) = z ) |
42 |
41
|
eqcomd |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> z = ( ( z - 1 ) + 1 ) ) |
43 |
33 36 42
|
rspcedvd |
|- ( ( N e. NN0 /\ z e. ( 1 ... N ) ) -> E. x e. ( 0 ..^ N ) z = ( x + 1 ) ) |
44 |
|
fveq2 |
|- ( z = ( x + 1 ) -> ( F ` z ) = ( F ` ( x + 1 ) ) ) |
45 |
44
|
eqeq2d |
|- ( z = ( x + 1 ) -> ( y = ( F ` z ) <-> y = ( F ` ( x + 1 ) ) ) ) |
46 |
45
|
adantl |
|- ( ( N e. NN0 /\ z = ( x + 1 ) ) -> ( y = ( F ` z ) <-> y = ( F ` ( x + 1 ) ) ) ) |
47 |
20 43 46
|
rexxfrd |
|- ( N e. NN0 -> ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ N ) y = ( F ` ( x + 1 ) ) ) ) |
48 |
47
|
adantr |
|- ( ( N e. NN0 /\ ( # ` F ) = N ) -> ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ N ) y = ( F ` ( x + 1 ) ) ) ) |
49 |
|
oveq2 |
|- ( ( # ` F ) = N -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
50 |
49
|
rexeqdv |
|- ( ( # ` F ) = N -> ( E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) <-> E. x e. ( 0 ..^ N ) y = ( F ` ( x + 1 ) ) ) ) |
51 |
50
|
bibi2d |
|- ( ( # ` F ) = N -> ( ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) ) <-> ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ N ) y = ( F ` ( x + 1 ) ) ) ) ) |
52 |
51
|
adantl |
|- ( ( N e. NN0 /\ ( # ` F ) = N ) -> ( ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) ) <-> ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ N ) y = ( F ` ( x + 1 ) ) ) ) ) |
53 |
48 52
|
mpbird |
|- ( ( N e. NN0 /\ ( # ` F ) = N ) -> ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) ) ) |
54 |
19 53
|
syldan |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( E. z e. ( 1 ... N ) y = ( F ` z ) <-> E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) ) ) |
55 |
54
|
abbidv |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> { y | E. z e. ( 1 ... N ) y = ( F ` z ) } = { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } ) |
56 |
55
|
eqeq1d |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( { y | E. z e. ( 1 ... N ) y = ( F ` z ) } = dom E <-> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) ) |
57 |
56
|
biimpcd |
|- ( { y | E. z e. ( 1 ... N ) y = ( F ` z ) } = dom E -> ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) ) |
58 |
15 57
|
syl6bi |
|- ( ran F = dom E -> ( ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } -> ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) ) ) |
59 |
58
|
com23 |
|- ( ran F = dom E -> ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } -> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) ) ) |
60 |
59
|
adantl |
|- ( ( F Fn ( 1 ... N ) /\ ran F = dom E ) -> ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } -> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) ) ) |
61 |
12 60
|
mpcom |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ( ran F = { y | E. z e. ( 1 ... N ) y = ( F ` z ) } -> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) ) |
62 |
9 61
|
mpd |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> { y | E. x e. ( 0 ..^ ( # ` F ) ) y = ( F ` ( x + 1 ) ) } = dom E ) |
63 |
5 62
|
syl5eq |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> ran G = dom E ) |
64 |
|
dffo2 |
|- ( G : ( 0 ..^ ( # ` F ) ) -onto-> dom E <-> ( G : ( 0 ..^ ( # ` F ) ) --> dom E /\ ran G = dom E ) ) |
65 |
4 63 64
|
sylanbrc |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) -onto-> dom E ) -> G : ( 0 ..^ ( # ` F ) ) -onto-> dom E ) |