| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcnlem.r |
|- R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
| 2 |
|
itgcnlem.s |
|- S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) |
| 3 |
|
itgcnlem.t |
|- T = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) |
| 4 |
|
itgcnlem.u |
|- U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) |
| 5 |
|
itgcnlem.v |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 6 |
|
itgcnlem.i |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
| 7 |
|
eqid |
|- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
| 8 |
7
|
dfitg |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 10 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 11 |
|
oveq2 |
|- ( k = 3 -> ( _i ^ k ) = ( _i ^ 3 ) ) |
| 12 |
|
i3 |
|- ( _i ^ 3 ) = -u _i |
| 13 |
11 12
|
eqtrdi |
|- ( k = 3 -> ( _i ^ k ) = -u _i ) |
| 14 |
12
|
itgvallem |
|- ( k = 3 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
| 15 |
13 14
|
oveq12d |
|- ( k = 3 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) |
| 16 |
|
ax-icn |
|- _i e. CC |
| 17 |
16
|
a1i |
|- ( ph -> _i e. CC ) |
| 18 |
|
expcl |
|- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
| 19 |
17 18
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
| 20 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 21 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
| 22 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) ) |
| 23 |
21 22 6 5
|
iblitg |
|- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
| 25 |
20 24
|
sylan2 |
|- ( ( ph /\ k e. NN0 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
| 26 |
19 25
|
mulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) |
| 27 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 28 |
|
oveq2 |
|- ( k = 2 -> ( _i ^ k ) = ( _i ^ 2 ) ) |
| 29 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 30 |
28 29
|
eqtrdi |
|- ( k = 2 -> ( _i ^ k ) = -u 1 ) |
| 31 |
29
|
itgvallem |
|- ( k = 2 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
| 32 |
30 31
|
oveq12d |
|- ( k = 2 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) |
| 33 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 34 |
|
oveq2 |
|- ( k = 1 -> ( _i ^ k ) = ( _i ^ 1 ) ) |
| 35 |
|
exp1 |
|- ( _i e. CC -> ( _i ^ 1 ) = _i ) |
| 36 |
16 35
|
ax-mp |
|- ( _i ^ 1 ) = _i |
| 37 |
34 36
|
eqtrdi |
|- ( k = 1 -> ( _i ^ k ) = _i ) |
| 38 |
36
|
itgvallem |
|- ( k = 1 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) |
| 39 |
37 38
|
oveq12d |
|- ( k = 1 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) |
| 40 |
|
0z |
|- 0 e. ZZ |
| 41 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
| 42 |
6 41
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 43 |
42 5
|
mbfmptcl |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 44 |
43
|
div1d |
|- ( ( ph /\ x e. A ) -> ( B / 1 ) = B ) |
| 45 |
44
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( Re ` ( B / 1 ) ) = ( Re ` B ) ) |
| 46 |
45
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) |
| 47 |
46
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
| 48 |
47
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) ) |
| 49 |
1 48
|
eqtr4id |
|- ( ph -> R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( 1 x. R ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 51 |
1 2 3 4 5
|
iblcnlem |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) ) |
| 52 |
6 51
|
mpbid |
|- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) |
| 53 |
52
|
simp2d |
|- ( ph -> ( R e. RR /\ S e. RR ) ) |
| 54 |
53
|
simpld |
|- ( ph -> R e. RR ) |
| 55 |
54
|
recnd |
|- ( ph -> R e. CC ) |
| 56 |
55
|
mullidd |
|- ( ph -> ( 1 x. R ) = R ) |
| 57 |
50 56
|
eqtr3d |
|- ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) = R ) |
| 58 |
57 55
|
eqeltrd |
|- ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) |
| 59 |
|
oveq2 |
|- ( k = 0 -> ( _i ^ k ) = ( _i ^ 0 ) ) |
| 60 |
|
exp0 |
|- ( _i e. CC -> ( _i ^ 0 ) = 1 ) |
| 61 |
16 60
|
ax-mp |
|- ( _i ^ 0 ) = 1 |
| 62 |
59 61
|
eqtrdi |
|- ( k = 0 -> ( _i ^ k ) = 1 ) |
| 63 |
61
|
itgvallem |
|- ( k = 0 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) |
| 64 |
62 63
|
oveq12d |
|- ( k = 0 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 65 |
64
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 66 |
40 58 65
|
sylancr |
|- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 67 |
66 57
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) |
| 68 |
|
0nn0 |
|- 0 e. NN0 |
| 69 |
67 68
|
jctil |
|- ( ph -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) ) |
| 70 |
|
imval |
|- ( B e. CC -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) |
| 71 |
43 70
|
syl |
|- ( ( ph /\ x e. A ) -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) |
| 72 |
71
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) |
| 73 |
72
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) |
| 74 |
73
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) |
| 75 |
3 74
|
eqtr2id |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) = T ) |
| 76 |
75
|
oveq2d |
|- ( ph -> ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) = ( _i x. T ) ) |
| 77 |
76
|
oveq2d |
|- ( ph -> ( R + ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) = ( R + ( _i x. T ) ) ) |
| 78 |
9 33 39 26 69 77
|
fsump1i |
|- ( ph -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( R + ( _i x. T ) ) ) ) |
| 79 |
43
|
renegd |
|- ( ( ph /\ x e. A ) -> ( Re ` -u B ) = -u ( Re ` B ) ) |
| 80 |
|
ax-1cn |
|- 1 e. CC |
| 81 |
80
|
negnegi |
|- -u -u 1 = 1 |
| 82 |
81
|
oveq2i |
|- ( -u B / -u -u 1 ) = ( -u B / 1 ) |
| 83 |
43
|
negcld |
|- ( ( ph /\ x e. A ) -> -u B e. CC ) |
| 84 |
83
|
div1d |
|- ( ( ph /\ x e. A ) -> ( -u B / 1 ) = -u B ) |
| 85 |
82 84
|
eqtrid |
|- ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = -u B ) |
| 86 |
80
|
negcli |
|- -u 1 e. CC |
| 87 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 88 |
|
div2neg |
|- ( ( B e. CC /\ -u 1 e. CC /\ -u 1 =/= 0 ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
| 89 |
86 87 88
|
mp3an23 |
|- ( B e. CC -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
| 90 |
43 89
|
syl |
|- ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
| 91 |
85 90
|
eqtr3d |
|- ( ( ph /\ x e. A ) -> -u B = ( B / -u 1 ) ) |
| 92 |
91
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( Re ` -u B ) = ( Re ` ( B / -u 1 ) ) ) |
| 93 |
79 92
|
eqtr3d |
|- ( ( ph /\ x e. A ) -> -u ( Re ` B ) = ( Re ` ( B / -u 1 ) ) ) |
| 94 |
93
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) |
| 95 |
94
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) |
| 96 |
95
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
| 97 |
2 96
|
eqtrid |
|- ( ph -> S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
| 98 |
97
|
oveq2d |
|- ( ph -> ( -u 1 x. S ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) |
| 99 |
53
|
simprd |
|- ( ph -> S e. RR ) |
| 100 |
99
|
recnd |
|- ( ph -> S e. CC ) |
| 101 |
100
|
mulm1d |
|- ( ph -> ( -u 1 x. S ) = -u S ) |
| 102 |
98 101
|
eqtr3d |
|- ( ph -> ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) = -u S ) |
| 103 |
102
|
oveq2d |
|- ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R + ( _i x. T ) ) + -u S ) ) |
| 104 |
52
|
simp3d |
|- ( ph -> ( T e. RR /\ U e. RR ) ) |
| 105 |
104
|
simpld |
|- ( ph -> T e. RR ) |
| 106 |
105
|
recnd |
|- ( ph -> T e. CC ) |
| 107 |
|
mulcl |
|- ( ( _i e. CC /\ T e. CC ) -> ( _i x. T ) e. CC ) |
| 108 |
16 106 107
|
sylancr |
|- ( ph -> ( _i x. T ) e. CC ) |
| 109 |
55 108
|
addcld |
|- ( ph -> ( R + ( _i x. T ) ) e. CC ) |
| 110 |
109 100
|
negsubd |
|- ( ph -> ( ( R + ( _i x. T ) ) + -u S ) = ( ( R + ( _i x. T ) ) - S ) ) |
| 111 |
55 108 100
|
addsubd |
|- ( ph -> ( ( R + ( _i x. T ) ) - S ) = ( ( R - S ) + ( _i x. T ) ) ) |
| 112 |
103 110 111
|
3eqtrd |
|- ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) |
| 113 |
9 27 32 26 78 112
|
fsump1i |
|- ( ph -> ( 2 e. NN0 /\ sum_ k e. ( 0 ... 2 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) ) |
| 114 |
|
imval |
|- ( -u B e. CC -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) |
| 115 |
83 114
|
syl |
|- ( ( ph /\ x e. A ) -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) |
| 116 |
43
|
imnegd |
|- ( ( ph /\ x e. A ) -> ( Im ` -u B ) = -u ( Im ` B ) ) |
| 117 |
16
|
negnegi |
|- -u -u _i = _i |
| 118 |
117
|
eqcomi |
|- _i = -u -u _i |
| 119 |
118
|
oveq2i |
|- ( -u B / _i ) = ( -u B / -u -u _i ) |
| 120 |
16
|
negcli |
|- -u _i e. CC |
| 121 |
|
ine0 |
|- _i =/= 0 |
| 122 |
16 121
|
negne0i |
|- -u _i =/= 0 |
| 123 |
|
div2neg |
|- ( ( B e. CC /\ -u _i e. CC /\ -u _i =/= 0 ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
| 124 |
120 122 123
|
mp3an23 |
|- ( B e. CC -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
| 125 |
43 124
|
syl |
|- ( ( ph /\ x e. A ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
| 126 |
119 125
|
eqtrid |
|- ( ( ph /\ x e. A ) -> ( -u B / _i ) = ( B / -u _i ) ) |
| 127 |
126
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( Re ` ( -u B / _i ) ) = ( Re ` ( B / -u _i ) ) ) |
| 128 |
115 116 127
|
3eqtr3d |
|- ( ( ph /\ x e. A ) -> -u ( Im ` B ) = ( Re ` ( B / -u _i ) ) ) |
| 129 |
128
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) |
| 130 |
129
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) |
| 131 |
130
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
| 132 |
4 131
|
eqtrid |
|- ( ph -> U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
| 133 |
132
|
oveq2d |
|- ( ph -> ( -u _i x. U ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) |
| 134 |
104
|
simprd |
|- ( ph -> U e. RR ) |
| 135 |
134
|
recnd |
|- ( ph -> U e. CC ) |
| 136 |
|
mulneg12 |
|- ( ( _i e. CC /\ U e. CC ) -> ( -u _i x. U ) = ( _i x. -u U ) ) |
| 137 |
16 135 136
|
sylancr |
|- ( ph -> ( -u _i x. U ) = ( _i x. -u U ) ) |
| 138 |
133 137
|
eqtr3d |
|- ( ph -> ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) = ( _i x. -u U ) ) |
| 139 |
138
|
oveq2d |
|- ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
| 140 |
9 10 15 26 113 139
|
fsump1i |
|- ( ph -> ( 3 e. NN0 /\ sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) ) |
| 141 |
140
|
simprd |
|- ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
| 142 |
8 141
|
eqtrid |
|- ( ph -> S. A B _d x = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
| 143 |
55 100
|
subcld |
|- ( ph -> ( R - S ) e. CC ) |
| 144 |
135
|
negcld |
|- ( ph -> -u U e. CC ) |
| 145 |
|
mulcl |
|- ( ( _i e. CC /\ -u U e. CC ) -> ( _i x. -u U ) e. CC ) |
| 146 |
16 144 145
|
sylancr |
|- ( ph -> ( _i x. -u U ) e. CC ) |
| 147 |
143 108 146
|
addassd |
|- ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) = ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) ) |
| 148 |
17 106 144
|
adddid |
|- ( ph -> ( _i x. ( T + -u U ) ) = ( ( _i x. T ) + ( _i x. -u U ) ) ) |
| 149 |
106 135
|
negsubd |
|- ( ph -> ( T + -u U ) = ( T - U ) ) |
| 150 |
149
|
oveq2d |
|- ( ph -> ( _i x. ( T + -u U ) ) = ( _i x. ( T - U ) ) ) |
| 151 |
148 150
|
eqtr3d |
|- ( ph -> ( ( _i x. T ) + ( _i x. -u U ) ) = ( _i x. ( T - U ) ) ) |
| 152 |
151
|
oveq2d |
|- ( ph -> ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |
| 153 |
142 147 152
|
3eqtrd |
|- ( ph -> S. A B _d x = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |