Step |
Hyp |
Ref |
Expression |
1 |
|
itgcnlem.r |
|- R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
2 |
|
itgcnlem.s |
|- S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) |
3 |
|
itgcnlem.t |
|- T = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) |
4 |
|
itgcnlem.u |
|- U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) |
5 |
|
itgcnlem.v |
|- ( ( ph /\ x e. A ) -> B e. V ) |
6 |
|
itgcnlem.i |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
7 |
|
eqid |
|- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
8 |
7
|
dfitg |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
10 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
11 |
|
oveq2 |
|- ( k = 3 -> ( _i ^ k ) = ( _i ^ 3 ) ) |
12 |
|
i3 |
|- ( _i ^ 3 ) = -u _i |
13 |
11 12
|
eqtrdi |
|- ( k = 3 -> ( _i ^ k ) = -u _i ) |
14 |
12
|
itgvallem |
|- ( k = 3 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
15 |
13 14
|
oveq12d |
|- ( k = 3 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) |
16 |
|
ax-icn |
|- _i e. CC |
17 |
16
|
a1i |
|- ( ph -> _i e. CC ) |
18 |
|
expcl |
|- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
19 |
17 18
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
20 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
21 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
22 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) ) |
23 |
21 22 6 5
|
iblitg |
|- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
24 |
23
|
recnd |
|- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
25 |
20 24
|
sylan2 |
|- ( ( ph /\ k e. NN0 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
26 |
19 25
|
mulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) |
27 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
28 |
|
oveq2 |
|- ( k = 2 -> ( _i ^ k ) = ( _i ^ 2 ) ) |
29 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
30 |
28 29
|
eqtrdi |
|- ( k = 2 -> ( _i ^ k ) = -u 1 ) |
31 |
29
|
itgvallem |
|- ( k = 2 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
32 |
30 31
|
oveq12d |
|- ( k = 2 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) |
33 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
34 |
|
oveq2 |
|- ( k = 1 -> ( _i ^ k ) = ( _i ^ 1 ) ) |
35 |
|
exp1 |
|- ( _i e. CC -> ( _i ^ 1 ) = _i ) |
36 |
16 35
|
ax-mp |
|- ( _i ^ 1 ) = _i |
37 |
34 36
|
eqtrdi |
|- ( k = 1 -> ( _i ^ k ) = _i ) |
38 |
36
|
itgvallem |
|- ( k = 1 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) |
39 |
37 38
|
oveq12d |
|- ( k = 1 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) |
40 |
|
0z |
|- 0 e. ZZ |
41 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
42 |
6 41
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
43 |
42 5
|
mbfmptcl |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
44 |
43
|
div1d |
|- ( ( ph /\ x e. A ) -> ( B / 1 ) = B ) |
45 |
44
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( Re ` ( B / 1 ) ) = ( Re ` B ) ) |
46 |
45
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) |
47 |
46
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
48 |
47
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) ) |
49 |
1 48
|
eqtr4id |
|- ( ph -> R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) |
50 |
49
|
oveq2d |
|- ( ph -> ( 1 x. R ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
51 |
1 2 3 4 5
|
iblcnlem |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) ) |
52 |
6 51
|
mpbid |
|- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) |
53 |
52
|
simp2d |
|- ( ph -> ( R e. RR /\ S e. RR ) ) |
54 |
53
|
simpld |
|- ( ph -> R e. RR ) |
55 |
54
|
recnd |
|- ( ph -> R e. CC ) |
56 |
55
|
mulid2d |
|- ( ph -> ( 1 x. R ) = R ) |
57 |
50 56
|
eqtr3d |
|- ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) = R ) |
58 |
57 55
|
eqeltrd |
|- ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) |
59 |
|
oveq2 |
|- ( k = 0 -> ( _i ^ k ) = ( _i ^ 0 ) ) |
60 |
|
exp0 |
|- ( _i e. CC -> ( _i ^ 0 ) = 1 ) |
61 |
16 60
|
ax-mp |
|- ( _i ^ 0 ) = 1 |
62 |
59 61
|
eqtrdi |
|- ( k = 0 -> ( _i ^ k ) = 1 ) |
63 |
61
|
itgvallem |
|- ( k = 0 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) |
64 |
62 63
|
oveq12d |
|- ( k = 0 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
65 |
64
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
66 |
40 58 65
|
sylancr |
|- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
67 |
66 57
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) |
68 |
|
0nn0 |
|- 0 e. NN0 |
69 |
67 68
|
jctil |
|- ( ph -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) ) |
70 |
|
imval |
|- ( B e. CC -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) |
71 |
43 70
|
syl |
|- ( ( ph /\ x e. A ) -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) |
72 |
71
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) |
73 |
72
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) |
74 |
73
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) |
75 |
3 74
|
eqtr2id |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) = T ) |
76 |
75
|
oveq2d |
|- ( ph -> ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) = ( _i x. T ) ) |
77 |
76
|
oveq2d |
|- ( ph -> ( R + ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) = ( R + ( _i x. T ) ) ) |
78 |
9 33 39 26 69 77
|
fsump1i |
|- ( ph -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( R + ( _i x. T ) ) ) ) |
79 |
43
|
renegd |
|- ( ( ph /\ x e. A ) -> ( Re ` -u B ) = -u ( Re ` B ) ) |
80 |
|
ax-1cn |
|- 1 e. CC |
81 |
80
|
negnegi |
|- -u -u 1 = 1 |
82 |
81
|
oveq2i |
|- ( -u B / -u -u 1 ) = ( -u B / 1 ) |
83 |
43
|
negcld |
|- ( ( ph /\ x e. A ) -> -u B e. CC ) |
84 |
83
|
div1d |
|- ( ( ph /\ x e. A ) -> ( -u B / 1 ) = -u B ) |
85 |
82 84
|
eqtrid |
|- ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = -u B ) |
86 |
80
|
negcli |
|- -u 1 e. CC |
87 |
|
neg1ne0 |
|- -u 1 =/= 0 |
88 |
|
div2neg |
|- ( ( B e. CC /\ -u 1 e. CC /\ -u 1 =/= 0 ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
89 |
86 87 88
|
mp3an23 |
|- ( B e. CC -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
90 |
43 89
|
syl |
|- ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
91 |
85 90
|
eqtr3d |
|- ( ( ph /\ x e. A ) -> -u B = ( B / -u 1 ) ) |
92 |
91
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( Re ` -u B ) = ( Re ` ( B / -u 1 ) ) ) |
93 |
79 92
|
eqtr3d |
|- ( ( ph /\ x e. A ) -> -u ( Re ` B ) = ( Re ` ( B / -u 1 ) ) ) |
94 |
93
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) |
95 |
94
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) |
96 |
95
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
97 |
2 96
|
eqtrid |
|- ( ph -> S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
98 |
97
|
oveq2d |
|- ( ph -> ( -u 1 x. S ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) |
99 |
53
|
simprd |
|- ( ph -> S e. RR ) |
100 |
99
|
recnd |
|- ( ph -> S e. CC ) |
101 |
100
|
mulm1d |
|- ( ph -> ( -u 1 x. S ) = -u S ) |
102 |
98 101
|
eqtr3d |
|- ( ph -> ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) = -u S ) |
103 |
102
|
oveq2d |
|- ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R + ( _i x. T ) ) + -u S ) ) |
104 |
52
|
simp3d |
|- ( ph -> ( T e. RR /\ U e. RR ) ) |
105 |
104
|
simpld |
|- ( ph -> T e. RR ) |
106 |
105
|
recnd |
|- ( ph -> T e. CC ) |
107 |
|
mulcl |
|- ( ( _i e. CC /\ T e. CC ) -> ( _i x. T ) e. CC ) |
108 |
16 106 107
|
sylancr |
|- ( ph -> ( _i x. T ) e. CC ) |
109 |
55 108
|
addcld |
|- ( ph -> ( R + ( _i x. T ) ) e. CC ) |
110 |
109 100
|
negsubd |
|- ( ph -> ( ( R + ( _i x. T ) ) + -u S ) = ( ( R + ( _i x. T ) ) - S ) ) |
111 |
55 108 100
|
addsubd |
|- ( ph -> ( ( R + ( _i x. T ) ) - S ) = ( ( R - S ) + ( _i x. T ) ) ) |
112 |
103 110 111
|
3eqtrd |
|- ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) |
113 |
9 27 32 26 78 112
|
fsump1i |
|- ( ph -> ( 2 e. NN0 /\ sum_ k e. ( 0 ... 2 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) ) |
114 |
|
imval |
|- ( -u B e. CC -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) |
115 |
83 114
|
syl |
|- ( ( ph /\ x e. A ) -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) |
116 |
43
|
imnegd |
|- ( ( ph /\ x e. A ) -> ( Im ` -u B ) = -u ( Im ` B ) ) |
117 |
16
|
negnegi |
|- -u -u _i = _i |
118 |
117
|
eqcomi |
|- _i = -u -u _i |
119 |
118
|
oveq2i |
|- ( -u B / _i ) = ( -u B / -u -u _i ) |
120 |
16
|
negcli |
|- -u _i e. CC |
121 |
|
ine0 |
|- _i =/= 0 |
122 |
16 121
|
negne0i |
|- -u _i =/= 0 |
123 |
|
div2neg |
|- ( ( B e. CC /\ -u _i e. CC /\ -u _i =/= 0 ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
124 |
120 122 123
|
mp3an23 |
|- ( B e. CC -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
125 |
43 124
|
syl |
|- ( ( ph /\ x e. A ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
126 |
119 125
|
eqtrid |
|- ( ( ph /\ x e. A ) -> ( -u B / _i ) = ( B / -u _i ) ) |
127 |
126
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( Re ` ( -u B / _i ) ) = ( Re ` ( B / -u _i ) ) ) |
128 |
115 116 127
|
3eqtr3d |
|- ( ( ph /\ x e. A ) -> -u ( Im ` B ) = ( Re ` ( B / -u _i ) ) ) |
129 |
128
|
ibllem |
|- ( ph -> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) |
130 |
129
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) |
131 |
130
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
132 |
4 131
|
eqtrid |
|- ( ph -> U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
133 |
132
|
oveq2d |
|- ( ph -> ( -u _i x. U ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) |
134 |
104
|
simprd |
|- ( ph -> U e. RR ) |
135 |
134
|
recnd |
|- ( ph -> U e. CC ) |
136 |
|
mulneg12 |
|- ( ( _i e. CC /\ U e. CC ) -> ( -u _i x. U ) = ( _i x. -u U ) ) |
137 |
16 135 136
|
sylancr |
|- ( ph -> ( -u _i x. U ) = ( _i x. -u U ) ) |
138 |
133 137
|
eqtr3d |
|- ( ph -> ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) = ( _i x. -u U ) ) |
139 |
138
|
oveq2d |
|- ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
140 |
9 10 15 26 113 139
|
fsump1i |
|- ( ph -> ( 3 e. NN0 /\ sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) ) |
141 |
140
|
simprd |
|- ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
142 |
8 141
|
eqtrid |
|- ( ph -> S. A B _d x = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
143 |
55 100
|
subcld |
|- ( ph -> ( R - S ) e. CC ) |
144 |
135
|
negcld |
|- ( ph -> -u U e. CC ) |
145 |
|
mulcl |
|- ( ( _i e. CC /\ -u U e. CC ) -> ( _i x. -u U ) e. CC ) |
146 |
16 144 145
|
sylancr |
|- ( ph -> ( _i x. -u U ) e. CC ) |
147 |
143 108 146
|
addassd |
|- ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) = ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) ) |
148 |
17 106 144
|
adddid |
|- ( ph -> ( _i x. ( T + -u U ) ) = ( ( _i x. T ) + ( _i x. -u U ) ) ) |
149 |
106 135
|
negsubd |
|- ( ph -> ( T + -u U ) = ( T - U ) ) |
150 |
149
|
oveq2d |
|- ( ph -> ( _i x. ( T + -u U ) ) = ( _i x. ( T - U ) ) ) |
151 |
148 150
|
eqtr3d |
|- ( ph -> ( ( _i x. T ) + ( _i x. -u U ) ) = ( _i x. ( T - U ) ) ) |
152 |
151
|
oveq2d |
|- ( ph -> ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |
153 |
142 147 152
|
3eqtrd |
|- ( ph -> S. A B _d x = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |