| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcnlem.r |
⊢ 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 2 |
|
itgcnlem.s |
⊢ 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 3 |
|
itgcnlem.t |
⊢ 𝑇 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 4 |
|
itgcnlem.u |
⊢ 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 5 |
|
itgcnlem.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 6 |
|
itgcnlem.i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 7 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 8 |
7
|
dfitg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 10 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 11 |
|
oveq2 |
⊢ ( 𝑘 = 3 → ( i ↑ 𝑘 ) = ( i ↑ 3 ) ) |
| 12 |
|
i3 |
⊢ ( i ↑ 3 ) = - i |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑘 = 3 → ( i ↑ 𝑘 ) = - i ) |
| 14 |
12
|
itgvallem |
⊢ ( 𝑘 = 3 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝑘 = 3 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) ) |
| 16 |
|
ax-icn |
⊢ i ∈ ℂ |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 18 |
|
expcl |
⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 19 |
17 18
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 20 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
| 21 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 23 |
21 22 6 5
|
iblitg |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 24 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
| 25 |
20 24
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
| 26 |
19 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ∈ ℂ ) |
| 27 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 28 |
|
oveq2 |
⊢ ( 𝑘 = 2 → ( i ↑ 𝑘 ) = ( i ↑ 2 ) ) |
| 29 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
| 30 |
28 29
|
eqtrdi |
⊢ ( 𝑘 = 2 → ( i ↑ 𝑘 ) = - 1 ) |
| 31 |
29
|
itgvallem |
⊢ ( 𝑘 = 2 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
| 32 |
30 31
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) |
| 33 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 34 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( i ↑ 𝑘 ) = ( i ↑ 1 ) ) |
| 35 |
|
exp1 |
⊢ ( i ∈ ℂ → ( i ↑ 1 ) = i ) |
| 36 |
16 35
|
ax-mp |
⊢ ( i ↑ 1 ) = i |
| 37 |
34 36
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( i ↑ 𝑘 ) = i ) |
| 38 |
36
|
itgvallem |
⊢ ( 𝑘 = 1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) |
| 39 |
37 38
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) ) |
| 40 |
|
0z |
⊢ 0 ∈ ℤ |
| 41 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 42 |
6 41
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 43 |
42 5
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 44 |
43
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / 1 ) = 𝐵 ) |
| 45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / 1 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 46 |
45
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 47 |
46
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) |
| 49 |
1 48
|
eqtr4id |
⊢ ( 𝜑 → 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 1 · 𝑅 ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
| 51 |
1 2 3 4 5
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| 52 |
6 51
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) |
| 53 |
52
|
simp2d |
⊢ ( 𝜑 → ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ) |
| 54 |
53
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 55 |
54
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 56 |
55
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑅 ) = 𝑅 ) |
| 57 |
50 56
|
eqtr3d |
⊢ ( 𝜑 → ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) = 𝑅 ) |
| 58 |
57 55
|
eqeltrd |
⊢ ( 𝜑 → ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ∈ ℂ ) |
| 59 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( i ↑ 𝑘 ) = ( i ↑ 0 ) ) |
| 60 |
|
exp0 |
⊢ ( i ∈ ℂ → ( i ↑ 0 ) = 1 ) |
| 61 |
16 60
|
ax-mp |
⊢ ( i ↑ 0 ) = 1 |
| 62 |
59 61
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( i ↑ 𝑘 ) = 1 ) |
| 63 |
61
|
itgvallem |
⊢ ( 𝑘 = 0 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) |
| 64 |
62 63
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
| 65 |
64
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
| 66 |
40 58 65
|
sylancr |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
| 67 |
66 57
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 𝑅 ) |
| 68 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 69 |
67 68
|
jctil |
⊢ ( 𝜑 → ( 0 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 𝑅 ) ) |
| 70 |
|
imval |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / i ) ) ) |
| 71 |
43 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / i ) ) ) |
| 72 |
71
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) |
| 73 |
72
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) |
| 74 |
73
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) |
| 75 |
3 74
|
eqtr2id |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) = 𝑇 ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) = ( i · 𝑇 ) ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 + ( i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) ) = ( 𝑅 + ( i · 𝑇 ) ) ) |
| 78 |
9 33 39 26 69 77
|
fsump1i |
⊢ ( 𝜑 → ( 1 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 𝑅 + ( i · 𝑇 ) ) ) ) |
| 79 |
43
|
renegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 80 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 81 |
80
|
negnegi |
⊢ - - 1 = 1 |
| 82 |
81
|
oveq2i |
⊢ ( - 𝐵 / - - 1 ) = ( - 𝐵 / 1 ) |
| 83 |
43
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 84 |
83
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / 1 ) = - 𝐵 ) |
| 85 |
82 84
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - 1 ) = - 𝐵 ) |
| 86 |
80
|
negcli |
⊢ - 1 ∈ ℂ |
| 87 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 88 |
|
div2neg |
⊢ ( ( 𝐵 ∈ ℂ ∧ - 1 ∈ ℂ ∧ - 1 ≠ 0 ) → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
| 89 |
86 87 88
|
mp3an23 |
⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
| 90 |
43 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
| 91 |
85 90
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 = ( 𝐵 / - 1 ) ) |
| 92 |
91
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ ( 𝐵 / - 1 ) ) ) |
| 93 |
79 92
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / - 1 ) ) ) |
| 94 |
93
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) |
| 95 |
94
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) |
| 96 |
95
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
| 97 |
2 96
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( - 1 · 𝑆 ) = ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) |
| 99 |
53
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 100 |
99
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 101 |
100
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝑆 ) = - 𝑆 ) |
| 102 |
98 101
|
eqtr3d |
⊢ ( 𝜑 → ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) = - 𝑆 ) |
| 103 |
102
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) + ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) = ( ( 𝑅 + ( i · 𝑇 ) ) + - 𝑆 ) ) |
| 104 |
52
|
simp3d |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) |
| 105 |
104
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 106 |
105
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 107 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( i · 𝑇 ) ∈ ℂ ) |
| 108 |
16 106 107
|
sylancr |
⊢ ( 𝜑 → ( i · 𝑇 ) ∈ ℂ ) |
| 109 |
55 108
|
addcld |
⊢ ( 𝜑 → ( 𝑅 + ( i · 𝑇 ) ) ∈ ℂ ) |
| 110 |
109 100
|
negsubd |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) + - 𝑆 ) = ( ( 𝑅 + ( i · 𝑇 ) ) − 𝑆 ) ) |
| 111 |
55 108 100
|
addsubd |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) − 𝑆 ) = ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) ) |
| 112 |
103 110 111
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) + ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) = ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) ) |
| 113 |
9 27 32 26 78 112
|
fsump1i |
⊢ ( 𝜑 → ( 2 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 2 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) ) ) |
| 114 |
|
imval |
⊢ ( - 𝐵 ∈ ℂ → ( ℑ ‘ - 𝐵 ) = ( ℜ ‘ ( - 𝐵 / i ) ) ) |
| 115 |
83 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = ( ℜ ‘ ( - 𝐵 / i ) ) ) |
| 116 |
43
|
imnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
| 117 |
16
|
negnegi |
⊢ - - i = i |
| 118 |
117
|
eqcomi |
⊢ i = - - i |
| 119 |
118
|
oveq2i |
⊢ ( - 𝐵 / i ) = ( - 𝐵 / - - i ) |
| 120 |
16
|
negcli |
⊢ - i ∈ ℂ |
| 121 |
|
ine0 |
⊢ i ≠ 0 |
| 122 |
16 121
|
negne0i |
⊢ - i ≠ 0 |
| 123 |
|
div2neg |
⊢ ( ( 𝐵 ∈ ℂ ∧ - i ∈ ℂ ∧ - i ≠ 0 ) → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
| 124 |
120 122 123
|
mp3an23 |
⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
| 125 |
43 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
| 126 |
119 125
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / i ) = ( 𝐵 / - i ) ) |
| 127 |
126
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( - 𝐵 / i ) ) = ( ℜ ‘ ( 𝐵 / - i ) ) ) |
| 128 |
115 116 127
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / - i ) ) ) |
| 129 |
128
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) |
| 130 |
129
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) |
| 131 |
130
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
| 132 |
4 131
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
| 133 |
132
|
oveq2d |
⊢ ( 𝜑 → ( - i · 𝑈 ) = ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) ) |
| 134 |
104
|
simprd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 135 |
134
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 136 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ 𝑈 ∈ ℂ ) → ( - i · 𝑈 ) = ( i · - 𝑈 ) ) |
| 137 |
16 135 136
|
sylancr |
⊢ ( 𝜑 → ( - i · 𝑈 ) = ( i · - 𝑈 ) ) |
| 138 |
133 137
|
eqtr3d |
⊢ ( 𝜑 → ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) = ( i · - 𝑈 ) ) |
| 139 |
138
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) ) = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) |
| 140 |
9 10 15 26 113 139
|
fsump1i |
⊢ ( 𝜑 → ( 3 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) ) |
| 141 |
140
|
simprd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) |
| 142 |
8 141
|
eqtrid |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) |
| 143 |
55 100
|
subcld |
⊢ ( 𝜑 → ( 𝑅 − 𝑆 ) ∈ ℂ ) |
| 144 |
135
|
negcld |
⊢ ( 𝜑 → - 𝑈 ∈ ℂ ) |
| 145 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ - 𝑈 ∈ ℂ ) → ( i · - 𝑈 ) ∈ ℂ ) |
| 146 |
16 144 145
|
sylancr |
⊢ ( 𝜑 → ( i · - 𝑈 ) ∈ ℂ ) |
| 147 |
143 108 146
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) = ( ( 𝑅 − 𝑆 ) + ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) ) ) |
| 148 |
17 106 144
|
adddid |
⊢ ( 𝜑 → ( i · ( 𝑇 + - 𝑈 ) ) = ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) ) |
| 149 |
106 135
|
negsubd |
⊢ ( 𝜑 → ( 𝑇 + - 𝑈 ) = ( 𝑇 − 𝑈 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( 𝜑 → ( i · ( 𝑇 + - 𝑈 ) ) = ( i · ( 𝑇 − 𝑈 ) ) ) |
| 151 |
148 150
|
eqtr3d |
⊢ ( 𝜑 → ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) = ( i · ( 𝑇 − 𝑈 ) ) ) |
| 152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑅 − 𝑆 ) + ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) ) = ( ( 𝑅 − 𝑆 ) + ( i · ( 𝑇 − 𝑈 ) ) ) ) |
| 153 |
142 147 152
|
3eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( 𝑅 − 𝑆 ) + ( i · ( 𝑇 − 𝑈 ) ) ) ) |