Step |
Hyp |
Ref |
Expression |
1 |
|
itgcnlem.r |
⊢ 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
2 |
|
itgcnlem.s |
⊢ 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
3 |
|
itgcnlem.t |
⊢ 𝑇 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
4 |
|
itgcnlem.u |
⊢ 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
5 |
|
itgcnlem.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
6 |
|
itgcnlem.i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
7 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
8 |
7
|
dfitg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
10 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
11 |
|
oveq2 |
⊢ ( 𝑘 = 3 → ( i ↑ 𝑘 ) = ( i ↑ 3 ) ) |
12 |
|
i3 |
⊢ ( i ↑ 3 ) = - i |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑘 = 3 → ( i ↑ 𝑘 ) = - i ) |
14 |
12
|
itgvallem |
⊢ ( 𝑘 = 3 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝑘 = 3 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) ) |
16 |
|
ax-icn |
⊢ i ∈ ℂ |
17 |
16
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
18 |
|
expcl |
⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
19 |
17 18
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
20 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
21 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
23 |
21 22 6 5
|
iblitg |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
24 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
25 |
20 24
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
26 |
19 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ∈ ℂ ) |
27 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
28 |
|
oveq2 |
⊢ ( 𝑘 = 2 → ( i ↑ 𝑘 ) = ( i ↑ 2 ) ) |
29 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
30 |
28 29
|
eqtrdi |
⊢ ( 𝑘 = 2 → ( i ↑ 𝑘 ) = - 1 ) |
31 |
29
|
itgvallem |
⊢ ( 𝑘 = 2 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
32 |
30 31
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) |
33 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
34 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( i ↑ 𝑘 ) = ( i ↑ 1 ) ) |
35 |
|
exp1 |
⊢ ( i ∈ ℂ → ( i ↑ 1 ) = i ) |
36 |
16 35
|
ax-mp |
⊢ ( i ↑ 1 ) = i |
37 |
34 36
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( i ↑ 𝑘 ) = i ) |
38 |
36
|
itgvallem |
⊢ ( 𝑘 = 1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) |
39 |
37 38
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) ) |
40 |
|
0z |
⊢ 0 ∈ ℤ |
41 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
42 |
6 41
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
43 |
42 5
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
44 |
43
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / 1 ) = 𝐵 ) |
45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / 1 ) ) = ( ℜ ‘ 𝐵 ) ) |
46 |
45
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
47 |
46
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) |
49 |
1 48
|
eqtr4id |
⊢ ( 𝜑 → 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 1 · 𝑅 ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
51 |
1 2 3 4 5
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
52 |
6 51
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) |
53 |
52
|
simp2d |
⊢ ( 𝜑 → ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ) |
54 |
53
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
55 |
54
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
56 |
55
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 𝑅 ) = 𝑅 ) |
57 |
50 56
|
eqtr3d |
⊢ ( 𝜑 → ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) = 𝑅 ) |
58 |
57 55
|
eqeltrd |
⊢ ( 𝜑 → ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ∈ ℂ ) |
59 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( i ↑ 𝑘 ) = ( i ↑ 0 ) ) |
60 |
|
exp0 |
⊢ ( i ∈ ℂ → ( i ↑ 0 ) = 1 ) |
61 |
16 60
|
ax-mp |
⊢ ( i ↑ 0 ) = 1 |
62 |
59 61
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( i ↑ 𝑘 ) = 1 ) |
63 |
61
|
itgvallem |
⊢ ( 𝑘 = 0 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) |
64 |
62 63
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
65 |
64
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
66 |
40 58 65
|
sylancr |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) ) |
67 |
66 57
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 𝑅 ) |
68 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
69 |
67 68
|
jctil |
⊢ ( 𝜑 → ( 0 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 𝑅 ) ) |
70 |
|
imval |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / i ) ) ) |
71 |
43 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / i ) ) ) |
72 |
71
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) |
73 |
72
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) |
74 |
73
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) |
75 |
3 74
|
eqtr2id |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) = 𝑇 ) |
76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) = ( i · 𝑇 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 + ( i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) ) = ( 𝑅 + ( i · 𝑇 ) ) ) |
78 |
9 33 39 26 69 77
|
fsump1i |
⊢ ( 𝜑 → ( 1 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( 𝑅 + ( i · 𝑇 ) ) ) ) |
79 |
43
|
renegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
80 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
81 |
80
|
negnegi |
⊢ - - 1 = 1 |
82 |
81
|
oveq2i |
⊢ ( - 𝐵 / - - 1 ) = ( - 𝐵 / 1 ) |
83 |
43
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
84 |
83
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / 1 ) = - 𝐵 ) |
85 |
82 84
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - 1 ) = - 𝐵 ) |
86 |
80
|
negcli |
⊢ - 1 ∈ ℂ |
87 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
88 |
|
div2neg |
⊢ ( ( 𝐵 ∈ ℂ ∧ - 1 ∈ ℂ ∧ - 1 ≠ 0 ) → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
89 |
86 87 88
|
mp3an23 |
⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
90 |
43 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
91 |
85 90
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 = ( 𝐵 / - 1 ) ) |
92 |
91
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ ( 𝐵 / - 1 ) ) ) |
93 |
79 92
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / - 1 ) ) ) |
94 |
93
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) |
95 |
94
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) |
96 |
95
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
97 |
2 96
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( - 1 · 𝑆 ) = ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) |
99 |
53
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
100 |
99
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
101 |
100
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝑆 ) = - 𝑆 ) |
102 |
98 101
|
eqtr3d |
⊢ ( 𝜑 → ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) = - 𝑆 ) |
103 |
102
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) + ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) = ( ( 𝑅 + ( i · 𝑇 ) ) + - 𝑆 ) ) |
104 |
52
|
simp3d |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) |
105 |
104
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
106 |
105
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
107 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( i · 𝑇 ) ∈ ℂ ) |
108 |
16 106 107
|
sylancr |
⊢ ( 𝜑 → ( i · 𝑇 ) ∈ ℂ ) |
109 |
55 108
|
addcld |
⊢ ( 𝜑 → ( 𝑅 + ( i · 𝑇 ) ) ∈ ℂ ) |
110 |
109 100
|
negsubd |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) + - 𝑆 ) = ( ( 𝑅 + ( i · 𝑇 ) ) − 𝑆 ) ) |
111 |
55 108 100
|
addsubd |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) − 𝑆 ) = ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) ) |
112 |
103 110 111
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 + ( i · 𝑇 ) ) + ( - 1 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) ) = ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) ) |
113 |
9 27 32 26 78 112
|
fsump1i |
⊢ ( 𝜑 → ( 2 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 2 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) ) ) |
114 |
|
imval |
⊢ ( - 𝐵 ∈ ℂ → ( ℑ ‘ - 𝐵 ) = ( ℜ ‘ ( - 𝐵 / i ) ) ) |
115 |
83 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = ( ℜ ‘ ( - 𝐵 / i ) ) ) |
116 |
43
|
imnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
117 |
16
|
negnegi |
⊢ - - i = i |
118 |
117
|
eqcomi |
⊢ i = - - i |
119 |
118
|
oveq2i |
⊢ ( - 𝐵 / i ) = ( - 𝐵 / - - i ) |
120 |
16
|
negcli |
⊢ - i ∈ ℂ |
121 |
|
ine0 |
⊢ i ≠ 0 |
122 |
16 121
|
negne0i |
⊢ - i ≠ 0 |
123 |
|
div2neg |
⊢ ( ( 𝐵 ∈ ℂ ∧ - i ∈ ℂ ∧ - i ≠ 0 ) → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
124 |
120 122 123
|
mp3an23 |
⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
125 |
43 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
126 |
119 125
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / i ) = ( 𝐵 / - i ) ) |
127 |
126
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( - 𝐵 / i ) ) = ( ℜ ‘ ( 𝐵 / - i ) ) ) |
128 |
115 116 127
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / - i ) ) ) |
129 |
128
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) |
130 |
129
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) |
131 |
130
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
132 |
4 131
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝜑 → ( - i · 𝑈 ) = ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) ) |
134 |
104
|
simprd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
135 |
134
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
136 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ 𝑈 ∈ ℂ ) → ( - i · 𝑈 ) = ( i · - 𝑈 ) ) |
137 |
16 135 136
|
sylancr |
⊢ ( 𝜑 → ( - i · 𝑈 ) = ( i · - 𝑈 ) ) |
138 |
133 137
|
eqtr3d |
⊢ ( 𝜑 → ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) = ( i · - 𝑈 ) ) |
139 |
138
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( - i · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) ) = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) |
140 |
9 10 15 26 113 139
|
fsump1i |
⊢ ( 𝜑 → ( 3 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) ) |
141 |
140
|
simprd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) |
142 |
8 141
|
eqtrid |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) ) |
143 |
55 100
|
subcld |
⊢ ( 𝜑 → ( 𝑅 − 𝑆 ) ∈ ℂ ) |
144 |
135
|
negcld |
⊢ ( 𝜑 → - 𝑈 ∈ ℂ ) |
145 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ - 𝑈 ∈ ℂ ) → ( i · - 𝑈 ) ∈ ℂ ) |
146 |
16 144 145
|
sylancr |
⊢ ( 𝜑 → ( i · - 𝑈 ) ∈ ℂ ) |
147 |
143 108 146
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑅 − 𝑆 ) + ( i · 𝑇 ) ) + ( i · - 𝑈 ) ) = ( ( 𝑅 − 𝑆 ) + ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) ) ) |
148 |
17 106 144
|
adddid |
⊢ ( 𝜑 → ( i · ( 𝑇 + - 𝑈 ) ) = ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) ) |
149 |
106 135
|
negsubd |
⊢ ( 𝜑 → ( 𝑇 + - 𝑈 ) = ( 𝑇 − 𝑈 ) ) |
150 |
149
|
oveq2d |
⊢ ( 𝜑 → ( i · ( 𝑇 + - 𝑈 ) ) = ( i · ( 𝑇 − 𝑈 ) ) ) |
151 |
148 150
|
eqtr3d |
⊢ ( 𝜑 → ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) = ( i · ( 𝑇 − 𝑈 ) ) ) |
152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑅 − 𝑆 ) + ( ( i · 𝑇 ) + ( i · - 𝑈 ) ) ) = ( ( 𝑅 − 𝑆 ) + ( i · ( 𝑇 − 𝑈 ) ) ) ) |
153 |
142 147 152
|
3eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( 𝑅 − 𝑆 ) + ( i · ( 𝑇 − 𝑈 ) ) ) ) |