| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r |  |-  ( ph -> R e. NN ) | 
						
							| 2 |  | lgamgulm.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 3 |  | lgamgulm.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | lgamgulm.a |  |-  ( ph -> A e. U ) | 
						
							| 5 |  | lgamgulm.l |  |-  ( ph -> ( 2 x. R ) <_ N ) | 
						
							| 6 | 1 2 | lgamgulmlem1 |  |-  ( ph -> U C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 7 | 6 4 | sseldd |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 8 | 7 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 9 | 3 | peano2nnd |  |-  ( ph -> ( N + 1 ) e. NN ) | 
						
							| 10 | 9 | nnrpd |  |-  ( ph -> ( N + 1 ) e. RR+ ) | 
						
							| 11 | 3 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 12 | 10 11 | rpdivcld |  |-  ( ph -> ( ( N + 1 ) / N ) e. RR+ ) | 
						
							| 13 | 12 | relogcld |  |-  ( ph -> ( log ` ( ( N + 1 ) / N ) ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ph -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) | 
						
							| 15 | 8 14 | mulcld |  |-  ( ph -> ( A x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) | 
						
							| 16 | 3 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 17 | 3 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 18 | 8 16 17 | divcld |  |-  ( ph -> ( A / N ) e. CC ) | 
						
							| 19 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 20 | 18 19 | addcld |  |-  ( ph -> ( ( A / N ) + 1 ) e. CC ) | 
						
							| 21 | 7 3 | dmgmdivn0 |  |-  ( ph -> ( ( A / N ) + 1 ) =/= 0 ) | 
						
							| 22 | 20 21 | logcld |  |-  ( ph -> ( log ` ( ( A / N ) + 1 ) ) e. CC ) | 
						
							| 23 | 15 22 | subcld |  |-  ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) | 
						
							| 24 | 23 | abscld |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) ) e. RR ) | 
						
							| 25 | 15 18 | subcld |  |-  ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) e. CC ) | 
						
							| 26 | 25 | abscld |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) e. RR ) | 
						
							| 27 | 18 22 | subcld |  |-  ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) | 
						
							| 28 | 27 | abscld |  |-  ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) e. RR ) | 
						
							| 29 | 26 28 | readdcld |  |-  ( ph -> ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) e. RR ) | 
						
							| 30 | 1 | nnred |  |-  ( ph -> R e. RR ) | 
						
							| 31 |  | 2re |  |-  2 e. RR | 
						
							| 32 | 31 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 33 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 34 | 30 33 | readdcld |  |-  ( ph -> ( R + 1 ) e. RR ) | 
						
							| 35 | 32 34 | remulcld |  |-  ( ph -> ( 2 x. ( R + 1 ) ) e. RR ) | 
						
							| 36 | 3 | nnsqcld |  |-  ( ph -> ( N ^ 2 ) e. NN ) | 
						
							| 37 | 35 36 | nndivred |  |-  ( ph -> ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) e. RR ) | 
						
							| 38 | 30 37 | remulcld |  |-  ( ph -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) e. RR ) | 
						
							| 39 | 15 22 18 | abs3difd |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) ) | 
						
							| 40 | 3 | nnrecred |  |-  ( ph -> ( 1 / N ) e. RR ) | 
						
							| 41 | 9 | nnrecred |  |-  ( ph -> ( 1 / ( N + 1 ) ) e. RR ) | 
						
							| 42 | 40 41 | resubcld |  |-  ( ph -> ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) e. RR ) | 
						
							| 43 | 30 42 | remulcld |  |-  ( ph -> ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) e. RR ) | 
						
							| 44 | 32 30 | remulcld |  |-  ( ph -> ( 2 x. R ) e. RR ) | 
						
							| 45 | 3 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 46 | 1 | nnrpd |  |-  ( ph -> R e. RR+ ) | 
						
							| 47 | 30 46 | ltaddrpd |  |-  ( ph -> R < ( R + R ) ) | 
						
							| 48 | 1 | nncnd |  |-  ( ph -> R e. CC ) | 
						
							| 49 | 48 | 2timesd |  |-  ( ph -> ( 2 x. R ) = ( R + R ) ) | 
						
							| 50 | 47 49 | breqtrrd |  |-  ( ph -> R < ( 2 x. R ) ) | 
						
							| 51 | 30 44 45 50 5 | ltletrd |  |-  ( ph -> R < N ) | 
						
							| 52 |  | difrp |  |-  ( ( R e. RR /\ N e. RR ) -> ( R < N <-> ( N - R ) e. RR+ ) ) | 
						
							| 53 | 30 45 52 | syl2anc |  |-  ( ph -> ( R < N <-> ( N - R ) e. RR+ ) ) | 
						
							| 54 | 51 53 | mpbid |  |-  ( ph -> ( N - R ) e. RR+ ) | 
						
							| 55 | 54 | rprecred |  |-  ( ph -> ( 1 / ( N - R ) ) e. RR ) | 
						
							| 56 | 55 40 | resubcld |  |-  ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) | 
						
							| 57 | 30 56 | remulcld |  |-  ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) | 
						
							| 58 | 43 57 | readdcld |  |-  ( ph -> ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) e. RR ) | 
						
							| 59 | 8 16 17 | divrecd |  |-  ( ph -> ( A / N ) = ( A x. ( 1 / N ) ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) = ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A x. ( 1 / N ) ) ) ) | 
						
							| 61 | 40 | recnd |  |-  ( ph -> ( 1 / N ) e. CC ) | 
						
							| 62 | 8 14 61 | subdid |  |-  ( ph -> ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) = ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A x. ( 1 / N ) ) ) ) | 
						
							| 63 | 60 62 | eqtr4d |  |-  ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) = ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) = ( abs ` ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 65 | 14 61 | subcld |  |-  ( ph -> ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) e. CC ) | 
						
							| 66 | 8 65 | absmuld |  |-  ( ph -> ( abs ` ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) = ( ( abs ` A ) x. ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 67 | 64 66 | eqtrd |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) = ( ( abs ` A ) x. ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 68 | 8 | abscld |  |-  ( ph -> ( abs ` A ) e. RR ) | 
						
							| 69 | 65 | abscld |  |-  ( ph -> ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) e. RR ) | 
						
							| 70 | 8 | absge0d |  |-  ( ph -> 0 <_ ( abs ` A ) ) | 
						
							| 71 | 65 | absge0d |  |-  ( ph -> 0 <_ ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) | 
						
							| 72 |  | fveq2 |  |-  ( x = A -> ( abs ` x ) = ( abs ` A ) ) | 
						
							| 73 | 72 | breq1d |  |-  ( x = A -> ( ( abs ` x ) <_ R <-> ( abs ` A ) <_ R ) ) | 
						
							| 74 |  | fvoveq1 |  |-  ( x = A -> ( abs ` ( x + k ) ) = ( abs ` ( A + k ) ) ) | 
						
							| 75 | 74 | breq2d |  |-  ( x = A -> ( ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 76 | 75 | ralbidv |  |-  ( x = A -> ( A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 77 | 73 76 | anbi12d |  |-  ( x = A -> ( ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) | 
						
							| 78 | 77 2 | elrab2 |  |-  ( A e. U <-> ( A e. CC /\ ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) | 
						
							| 79 | 78 | simprbi |  |-  ( A e. U -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 80 | 4 79 | syl |  |-  ( ph -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 81 | 80 | simpld |  |-  ( ph -> ( abs ` A ) <_ R ) | 
						
							| 82 | 10 11 | relogdivd |  |-  ( ph -> ( log ` ( ( N + 1 ) / N ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) | 
						
							| 83 |  | logdifbnd |  |-  ( N e. RR+ -> ( ( log ` ( N + 1 ) ) - ( log ` N ) ) <_ ( 1 / N ) ) | 
						
							| 84 | 11 83 | syl |  |-  ( ph -> ( ( log ` ( N + 1 ) ) - ( log ` N ) ) <_ ( 1 / N ) ) | 
						
							| 85 | 82 84 | eqbrtrd |  |-  ( ph -> ( log ` ( ( N + 1 ) / N ) ) <_ ( 1 / N ) ) | 
						
							| 86 | 13 40 85 | abssuble0d |  |-  ( ph -> ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) = ( ( 1 / N ) - ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 87 |  | logdiflbnd |  |-  ( N e. RR+ -> ( 1 / ( N + 1 ) ) <_ ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) | 
						
							| 88 | 11 87 | syl |  |-  ( ph -> ( 1 / ( N + 1 ) ) <_ ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) | 
						
							| 89 | 88 82 | breqtrrd |  |-  ( ph -> ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) ) | 
						
							| 90 | 41 13 40 89 | lesub2dd |  |-  ( ph -> ( ( 1 / N ) - ( log ` ( ( N + 1 ) / N ) ) ) <_ ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) | 
						
							| 91 | 86 90 | eqbrtrd |  |-  ( ph -> ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) <_ ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) | 
						
							| 92 | 68 30 69 42 70 71 81 91 | lemul12ad |  |-  ( ph -> ( ( abs ` A ) x. ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) <_ ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) ) | 
						
							| 93 | 67 92 | eqbrtrd |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) <_ ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) ) | 
						
							| 94 | 1 2 3 4 5 | lgamgulmlem2 |  |-  ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 95 | 26 28 43 57 93 94 | le2addd |  |-  ( ph -> ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) <_ ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 96 | 16 48 | subcld |  |-  ( ph -> ( N - R ) e. CC ) | 
						
							| 97 | 16 19 | addcld |  |-  ( ph -> ( N + 1 ) e. CC ) | 
						
							| 98 | 30 51 | gtned |  |-  ( ph -> N =/= R ) | 
						
							| 99 | 16 48 98 | subne0d |  |-  ( ph -> ( N - R ) =/= 0 ) | 
						
							| 100 | 9 | nnne0d |  |-  ( ph -> ( N + 1 ) =/= 0 ) | 
						
							| 101 | 96 97 99 100 | subrecd |  |-  ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) = ( ( ( N + 1 ) - ( N - R ) ) / ( ( N - R ) x. ( N + 1 ) ) ) ) | 
						
							| 102 | 16 19 48 | pnncand |  |-  ( ph -> ( ( N + 1 ) - ( N - R ) ) = ( 1 + R ) ) | 
						
							| 103 | 19 48 102 | comraddd |  |-  ( ph -> ( ( N + 1 ) - ( N - R ) ) = ( R + 1 ) ) | 
						
							| 104 | 103 | oveq1d |  |-  ( ph -> ( ( ( N + 1 ) - ( N - R ) ) / ( ( N - R ) x. ( N + 1 ) ) ) = ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) | 
						
							| 105 | 101 104 | eqtr2d |  |-  ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) = ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) | 
						
							| 106 | 105 | oveq2d |  |-  ( ph -> ( R x. ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) = ( R x. ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) ) | 
						
							| 107 | 97 100 | reccld |  |-  ( ph -> ( 1 / ( N + 1 ) ) e. CC ) | 
						
							| 108 | 96 99 | reccld |  |-  ( ph -> ( 1 / ( N - R ) ) e. CC ) | 
						
							| 109 | 61 107 108 | npncan3d |  |-  ( ph -> ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) | 
						
							| 110 | 109 | eqcomd |  |-  ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) = ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 111 | 110 | oveq2d |  |-  ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) = ( R x. ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 112 | 42 | recnd |  |-  ( ph -> ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) e. CC ) | 
						
							| 113 | 56 | recnd |  |-  ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) | 
						
							| 114 | 48 112 113 | adddid |  |-  ( ph -> ( R x. ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) = ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 115 | 106 111 114 | 3eqtrd |  |-  ( ph -> ( R x. ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) = ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 116 | 54 10 | rpmulcld |  |-  ( ph -> ( ( N - R ) x. ( N + 1 ) ) e. RR+ ) | 
						
							| 117 | 34 116 | rerpdivcld |  |-  ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) e. RR ) | 
						
							| 118 | 46 | rpge0d |  |-  ( ph -> 0 <_ R ) | 
						
							| 119 |  | 2z |  |-  2 e. ZZ | 
						
							| 120 | 119 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 121 | 11 120 | rpexpcld |  |-  ( ph -> ( N ^ 2 ) e. RR+ ) | 
						
							| 122 | 121 | rphalfcld |  |-  ( ph -> ( ( N ^ 2 ) / 2 ) e. RR+ ) | 
						
							| 123 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 124 | 123 | a1i |  |-  ( ph -> 0 <_ 1 ) | 
						
							| 125 | 30 33 118 124 | addge0d |  |-  ( ph -> 0 <_ ( R + 1 ) ) | 
						
							| 126 | 16 | sqvald |  |-  ( ph -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 127 | 126 | oveq1d |  |-  ( ph -> ( ( N ^ 2 ) / 2 ) = ( ( N x. N ) / 2 ) ) | 
						
							| 128 | 32 | recnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 129 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 130 | 129 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 131 | 16 16 128 130 | div23d |  |-  ( ph -> ( ( N x. N ) / 2 ) = ( ( N / 2 ) x. N ) ) | 
						
							| 132 | 127 131 | eqtrd |  |-  ( ph -> ( ( N ^ 2 ) / 2 ) = ( ( N / 2 ) x. N ) ) | 
						
							| 133 | 45 | rehalfcld |  |-  ( ph -> ( N / 2 ) e. RR ) | 
						
							| 134 | 45 30 | resubcld |  |-  ( ph -> ( N - R ) e. RR ) | 
						
							| 135 | 45 33 | readdcld |  |-  ( ph -> ( N + 1 ) e. RR ) | 
						
							| 136 |  | 2rp |  |-  2 e. RR+ | 
						
							| 137 | 136 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 138 | 11 | rpge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 139 | 45 137 138 | divge0d |  |-  ( ph -> 0 <_ ( N / 2 ) ) | 
						
							| 140 | 30 45 137 | lemuldiv2d |  |-  ( ph -> ( ( 2 x. R ) <_ N <-> R <_ ( N / 2 ) ) ) | 
						
							| 141 | 5 140 | mpbid |  |-  ( ph -> R <_ ( N / 2 ) ) | 
						
							| 142 | 16 | 2halvesd |  |-  ( ph -> ( ( N / 2 ) + ( N / 2 ) ) = N ) | 
						
							| 143 | 133 | recnd |  |-  ( ph -> ( N / 2 ) e. CC ) | 
						
							| 144 | 16 143 143 | subaddd |  |-  ( ph -> ( ( N - ( N / 2 ) ) = ( N / 2 ) <-> ( ( N / 2 ) + ( N / 2 ) ) = N ) ) | 
						
							| 145 | 142 144 | mpbird |  |-  ( ph -> ( N - ( N / 2 ) ) = ( N / 2 ) ) | 
						
							| 146 | 141 145 | breqtrrd |  |-  ( ph -> R <_ ( N - ( N / 2 ) ) ) | 
						
							| 147 | 30 45 133 146 | lesubd |  |-  ( ph -> ( N / 2 ) <_ ( N - R ) ) | 
						
							| 148 | 45 | lep1d |  |-  ( ph -> N <_ ( N + 1 ) ) | 
						
							| 149 | 133 134 45 135 139 138 147 148 | lemul12ad |  |-  ( ph -> ( ( N / 2 ) x. N ) <_ ( ( N - R ) x. ( N + 1 ) ) ) | 
						
							| 150 | 132 149 | eqbrtrd |  |-  ( ph -> ( ( N ^ 2 ) / 2 ) <_ ( ( N - R ) x. ( N + 1 ) ) ) | 
						
							| 151 | 122 116 34 125 150 | lediv2ad |  |-  ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) <_ ( ( R + 1 ) / ( ( N ^ 2 ) / 2 ) ) ) | 
						
							| 152 | 1 | peano2nnd |  |-  ( ph -> ( R + 1 ) e. NN ) | 
						
							| 153 | 152 | nncnd |  |-  ( ph -> ( R + 1 ) e. CC ) | 
						
							| 154 | 36 | nncnd |  |-  ( ph -> ( N ^ 2 ) e. CC ) | 
						
							| 155 | 36 | nnne0d |  |-  ( ph -> ( N ^ 2 ) =/= 0 ) | 
						
							| 156 | 153 154 128 155 130 | divdiv2d |  |-  ( ph -> ( ( R + 1 ) / ( ( N ^ 2 ) / 2 ) ) = ( ( ( R + 1 ) x. 2 ) / ( N ^ 2 ) ) ) | 
						
							| 157 | 153 128 | mulcomd |  |-  ( ph -> ( ( R + 1 ) x. 2 ) = ( 2 x. ( R + 1 ) ) ) | 
						
							| 158 | 157 | oveq1d |  |-  ( ph -> ( ( ( R + 1 ) x. 2 ) / ( N ^ 2 ) ) = ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) | 
						
							| 159 | 156 158 | eqtr2d |  |-  ( ph -> ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) = ( ( R + 1 ) / ( ( N ^ 2 ) / 2 ) ) ) | 
						
							| 160 | 151 159 | breqtrrd |  |-  ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) <_ ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) | 
						
							| 161 | 117 37 30 118 160 | lemul2ad |  |-  ( ph -> ( R x. ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 162 | 115 161 | eqbrtrrd |  |-  ( ph -> ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 163 | 29 58 38 95 162 | letrd |  |-  ( ph -> ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 164 | 24 29 38 39 163 | letrd |  |-  ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) |