| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
|- ( ph -> R e. NN ) |
| 2 |
|
lgamgulm.u |
|- U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } |
| 3 |
|
lgamgulm.n |
|- ( ph -> N e. NN ) |
| 4 |
|
lgamgulm.a |
|- ( ph -> A e. U ) |
| 5 |
|
lgamgulm.l |
|- ( ph -> ( 2 x. R ) <_ N ) |
| 6 |
1 2
|
lgamgulmlem1 |
|- ( ph -> U C_ ( CC \ ( ZZ \ NN ) ) ) |
| 7 |
6 4
|
sseldd |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 8 |
7
|
eldifad |
|- ( ph -> A e. CC ) |
| 9 |
3
|
peano2nnd |
|- ( ph -> ( N + 1 ) e. NN ) |
| 10 |
9
|
nnrpd |
|- ( ph -> ( N + 1 ) e. RR+ ) |
| 11 |
3
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 12 |
10 11
|
rpdivcld |
|- ( ph -> ( ( N + 1 ) / N ) e. RR+ ) |
| 13 |
12
|
relogcld |
|- ( ph -> ( log ` ( ( N + 1 ) / N ) ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ph -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) |
| 15 |
8 14
|
mulcld |
|- ( ph -> ( A x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) |
| 16 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
| 17 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 18 |
8 16 17
|
divcld |
|- ( ph -> ( A / N ) e. CC ) |
| 19 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 20 |
18 19
|
addcld |
|- ( ph -> ( ( A / N ) + 1 ) e. CC ) |
| 21 |
7 3
|
dmgmdivn0 |
|- ( ph -> ( ( A / N ) + 1 ) =/= 0 ) |
| 22 |
20 21
|
logcld |
|- ( ph -> ( log ` ( ( A / N ) + 1 ) ) e. CC ) |
| 23 |
15 22
|
subcld |
|- ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) |
| 24 |
23
|
abscld |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) ) e. RR ) |
| 25 |
15 18
|
subcld |
|- ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) e. CC ) |
| 26 |
25
|
abscld |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) e. RR ) |
| 27 |
18 22
|
subcld |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) |
| 28 |
27
|
abscld |
|- ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) e. RR ) |
| 29 |
26 28
|
readdcld |
|- ( ph -> ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) e. RR ) |
| 30 |
1
|
nnred |
|- ( ph -> R e. RR ) |
| 31 |
|
2re |
|- 2 e. RR |
| 32 |
31
|
a1i |
|- ( ph -> 2 e. RR ) |
| 33 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 34 |
30 33
|
readdcld |
|- ( ph -> ( R + 1 ) e. RR ) |
| 35 |
32 34
|
remulcld |
|- ( ph -> ( 2 x. ( R + 1 ) ) e. RR ) |
| 36 |
3
|
nnsqcld |
|- ( ph -> ( N ^ 2 ) e. NN ) |
| 37 |
35 36
|
nndivred |
|- ( ph -> ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) e. RR ) |
| 38 |
30 37
|
remulcld |
|- ( ph -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) e. RR ) |
| 39 |
15 22 18
|
abs3difd |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) ) |
| 40 |
3
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
| 41 |
9
|
nnrecred |
|- ( ph -> ( 1 / ( N + 1 ) ) e. RR ) |
| 42 |
40 41
|
resubcld |
|- ( ph -> ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) e. RR ) |
| 43 |
30 42
|
remulcld |
|- ( ph -> ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) e. RR ) |
| 44 |
32 30
|
remulcld |
|- ( ph -> ( 2 x. R ) e. RR ) |
| 45 |
3
|
nnred |
|- ( ph -> N e. RR ) |
| 46 |
1
|
nnrpd |
|- ( ph -> R e. RR+ ) |
| 47 |
30 46
|
ltaddrpd |
|- ( ph -> R < ( R + R ) ) |
| 48 |
1
|
nncnd |
|- ( ph -> R e. CC ) |
| 49 |
48
|
2timesd |
|- ( ph -> ( 2 x. R ) = ( R + R ) ) |
| 50 |
47 49
|
breqtrrd |
|- ( ph -> R < ( 2 x. R ) ) |
| 51 |
30 44 45 50 5
|
ltletrd |
|- ( ph -> R < N ) |
| 52 |
|
difrp |
|- ( ( R e. RR /\ N e. RR ) -> ( R < N <-> ( N - R ) e. RR+ ) ) |
| 53 |
30 45 52
|
syl2anc |
|- ( ph -> ( R < N <-> ( N - R ) e. RR+ ) ) |
| 54 |
51 53
|
mpbid |
|- ( ph -> ( N - R ) e. RR+ ) |
| 55 |
54
|
rprecred |
|- ( ph -> ( 1 / ( N - R ) ) e. RR ) |
| 56 |
55 40
|
resubcld |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) |
| 57 |
30 56
|
remulcld |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
| 58 |
43 57
|
readdcld |
|- ( ph -> ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) e. RR ) |
| 59 |
8 16 17
|
divrecd |
|- ( ph -> ( A / N ) = ( A x. ( 1 / N ) ) ) |
| 60 |
59
|
oveq2d |
|- ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) = ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A x. ( 1 / N ) ) ) ) |
| 61 |
40
|
recnd |
|- ( ph -> ( 1 / N ) e. CC ) |
| 62 |
8 14 61
|
subdid |
|- ( ph -> ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) = ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A x. ( 1 / N ) ) ) ) |
| 63 |
60 62
|
eqtr4d |
|- ( ph -> ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) = ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) |
| 64 |
63
|
fveq2d |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) = ( abs ` ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) ) |
| 65 |
14 61
|
subcld |
|- ( ph -> ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) e. CC ) |
| 66 |
8 65
|
absmuld |
|- ( ph -> ( abs ` ( A x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) = ( ( abs ` A ) x. ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) ) |
| 67 |
64 66
|
eqtrd |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) = ( ( abs ` A ) x. ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) ) |
| 68 |
8
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
| 69 |
65
|
abscld |
|- ( ph -> ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) e. RR ) |
| 70 |
8
|
absge0d |
|- ( ph -> 0 <_ ( abs ` A ) ) |
| 71 |
65
|
absge0d |
|- ( ph -> 0 <_ ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) |
| 72 |
|
fveq2 |
|- ( x = A -> ( abs ` x ) = ( abs ` A ) ) |
| 73 |
72
|
breq1d |
|- ( x = A -> ( ( abs ` x ) <_ R <-> ( abs ` A ) <_ R ) ) |
| 74 |
|
fvoveq1 |
|- ( x = A -> ( abs ` ( x + k ) ) = ( abs ` ( A + k ) ) ) |
| 75 |
74
|
breq2d |
|- ( x = A -> ( ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 76 |
75
|
ralbidv |
|- ( x = A -> ( A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 77 |
73 76
|
anbi12d |
|- ( x = A -> ( ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) |
| 78 |
77 2
|
elrab2 |
|- ( A e. U <-> ( A e. CC /\ ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) |
| 79 |
78
|
simprbi |
|- ( A e. U -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 80 |
4 79
|
syl |
|- ( ph -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 81 |
80
|
simpld |
|- ( ph -> ( abs ` A ) <_ R ) |
| 82 |
10 11
|
relogdivd |
|- ( ph -> ( log ` ( ( N + 1 ) / N ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 83 |
|
logdifbnd |
|- ( N e. RR+ -> ( ( log ` ( N + 1 ) ) - ( log ` N ) ) <_ ( 1 / N ) ) |
| 84 |
11 83
|
syl |
|- ( ph -> ( ( log ` ( N + 1 ) ) - ( log ` N ) ) <_ ( 1 / N ) ) |
| 85 |
82 84
|
eqbrtrd |
|- ( ph -> ( log ` ( ( N + 1 ) / N ) ) <_ ( 1 / N ) ) |
| 86 |
13 40 85
|
abssuble0d |
|- ( ph -> ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) = ( ( 1 / N ) - ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 87 |
|
logdiflbnd |
|- ( N e. RR+ -> ( 1 / ( N + 1 ) ) <_ ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 88 |
11 87
|
syl |
|- ( ph -> ( 1 / ( N + 1 ) ) <_ ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 89 |
88 82
|
breqtrrd |
|- ( ph -> ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) ) |
| 90 |
41 13 40 89
|
lesub2dd |
|- ( ph -> ( ( 1 / N ) - ( log ` ( ( N + 1 ) / N ) ) ) <_ ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) |
| 91 |
86 90
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) <_ ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) |
| 92 |
68 30 69 42 70 71 81 91
|
lemul12ad |
|- ( ph -> ( ( abs ` A ) x. ( abs ` ( ( log ` ( ( N + 1 ) / N ) ) - ( 1 / N ) ) ) ) <_ ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) ) |
| 93 |
67 92
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) <_ ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) ) |
| 94 |
1 2 3 4 5
|
lgamgulmlem2 |
|- ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 95 |
26 28 43 57 93 94
|
le2addd |
|- ( ph -> ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) <_ ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 96 |
16 48
|
subcld |
|- ( ph -> ( N - R ) e. CC ) |
| 97 |
16 19
|
addcld |
|- ( ph -> ( N + 1 ) e. CC ) |
| 98 |
30 51
|
gtned |
|- ( ph -> N =/= R ) |
| 99 |
16 48 98
|
subne0d |
|- ( ph -> ( N - R ) =/= 0 ) |
| 100 |
9
|
nnne0d |
|- ( ph -> ( N + 1 ) =/= 0 ) |
| 101 |
96 97 99 100
|
subrecd |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) = ( ( ( N + 1 ) - ( N - R ) ) / ( ( N - R ) x. ( N + 1 ) ) ) ) |
| 102 |
16 19 48
|
pnncand |
|- ( ph -> ( ( N + 1 ) - ( N - R ) ) = ( 1 + R ) ) |
| 103 |
19 48 102
|
comraddd |
|- ( ph -> ( ( N + 1 ) - ( N - R ) ) = ( R + 1 ) ) |
| 104 |
103
|
oveq1d |
|- ( ph -> ( ( ( N + 1 ) - ( N - R ) ) / ( ( N - R ) x. ( N + 1 ) ) ) = ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) |
| 105 |
101 104
|
eqtr2d |
|- ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) = ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) |
| 106 |
105
|
oveq2d |
|- ( ph -> ( R x. ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) = ( R x. ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) ) |
| 107 |
97 100
|
reccld |
|- ( ph -> ( 1 / ( N + 1 ) ) e. CC ) |
| 108 |
96 99
|
reccld |
|- ( ph -> ( 1 / ( N - R ) ) e. CC ) |
| 109 |
61 107 108
|
npncan3d |
|- ( ph -> ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) |
| 110 |
109
|
eqcomd |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) = ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 111 |
110
|
oveq2d |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / ( N + 1 ) ) ) ) = ( R x. ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 112 |
42
|
recnd |
|- ( ph -> ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) e. CC ) |
| 113 |
56
|
recnd |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) |
| 114 |
48 112 113
|
adddid |
|- ( ph -> ( R x. ( ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) + ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) = ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 115 |
106 111 114
|
3eqtrd |
|- ( ph -> ( R x. ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) = ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 116 |
54 10
|
rpmulcld |
|- ( ph -> ( ( N - R ) x. ( N + 1 ) ) e. RR+ ) |
| 117 |
34 116
|
rerpdivcld |
|- ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) e. RR ) |
| 118 |
46
|
rpge0d |
|- ( ph -> 0 <_ R ) |
| 119 |
|
2z |
|- 2 e. ZZ |
| 120 |
119
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 121 |
11 120
|
rpexpcld |
|- ( ph -> ( N ^ 2 ) e. RR+ ) |
| 122 |
121
|
rphalfcld |
|- ( ph -> ( ( N ^ 2 ) / 2 ) e. RR+ ) |
| 123 |
|
0le1 |
|- 0 <_ 1 |
| 124 |
123
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 125 |
30 33 118 124
|
addge0d |
|- ( ph -> 0 <_ ( R + 1 ) ) |
| 126 |
16
|
sqvald |
|- ( ph -> ( N ^ 2 ) = ( N x. N ) ) |
| 127 |
126
|
oveq1d |
|- ( ph -> ( ( N ^ 2 ) / 2 ) = ( ( N x. N ) / 2 ) ) |
| 128 |
32
|
recnd |
|- ( ph -> 2 e. CC ) |
| 129 |
|
2ne0 |
|- 2 =/= 0 |
| 130 |
129
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 131 |
16 16 128 130
|
div23d |
|- ( ph -> ( ( N x. N ) / 2 ) = ( ( N / 2 ) x. N ) ) |
| 132 |
127 131
|
eqtrd |
|- ( ph -> ( ( N ^ 2 ) / 2 ) = ( ( N / 2 ) x. N ) ) |
| 133 |
45
|
rehalfcld |
|- ( ph -> ( N / 2 ) e. RR ) |
| 134 |
45 30
|
resubcld |
|- ( ph -> ( N - R ) e. RR ) |
| 135 |
45 33
|
readdcld |
|- ( ph -> ( N + 1 ) e. RR ) |
| 136 |
|
2rp |
|- 2 e. RR+ |
| 137 |
136
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 138 |
11
|
rpge0d |
|- ( ph -> 0 <_ N ) |
| 139 |
45 137 138
|
divge0d |
|- ( ph -> 0 <_ ( N / 2 ) ) |
| 140 |
30 45 137
|
lemuldiv2d |
|- ( ph -> ( ( 2 x. R ) <_ N <-> R <_ ( N / 2 ) ) ) |
| 141 |
5 140
|
mpbid |
|- ( ph -> R <_ ( N / 2 ) ) |
| 142 |
16
|
2halvesd |
|- ( ph -> ( ( N / 2 ) + ( N / 2 ) ) = N ) |
| 143 |
133
|
recnd |
|- ( ph -> ( N / 2 ) e. CC ) |
| 144 |
16 143 143
|
subaddd |
|- ( ph -> ( ( N - ( N / 2 ) ) = ( N / 2 ) <-> ( ( N / 2 ) + ( N / 2 ) ) = N ) ) |
| 145 |
142 144
|
mpbird |
|- ( ph -> ( N - ( N / 2 ) ) = ( N / 2 ) ) |
| 146 |
141 145
|
breqtrrd |
|- ( ph -> R <_ ( N - ( N / 2 ) ) ) |
| 147 |
30 45 133 146
|
lesubd |
|- ( ph -> ( N / 2 ) <_ ( N - R ) ) |
| 148 |
45
|
lep1d |
|- ( ph -> N <_ ( N + 1 ) ) |
| 149 |
133 134 45 135 139 138 147 148
|
lemul12ad |
|- ( ph -> ( ( N / 2 ) x. N ) <_ ( ( N - R ) x. ( N + 1 ) ) ) |
| 150 |
132 149
|
eqbrtrd |
|- ( ph -> ( ( N ^ 2 ) / 2 ) <_ ( ( N - R ) x. ( N + 1 ) ) ) |
| 151 |
122 116 34 125 150
|
lediv2ad |
|- ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) <_ ( ( R + 1 ) / ( ( N ^ 2 ) / 2 ) ) ) |
| 152 |
1
|
peano2nnd |
|- ( ph -> ( R + 1 ) e. NN ) |
| 153 |
152
|
nncnd |
|- ( ph -> ( R + 1 ) e. CC ) |
| 154 |
36
|
nncnd |
|- ( ph -> ( N ^ 2 ) e. CC ) |
| 155 |
36
|
nnne0d |
|- ( ph -> ( N ^ 2 ) =/= 0 ) |
| 156 |
153 154 128 155 130
|
divdiv2d |
|- ( ph -> ( ( R + 1 ) / ( ( N ^ 2 ) / 2 ) ) = ( ( ( R + 1 ) x. 2 ) / ( N ^ 2 ) ) ) |
| 157 |
153 128
|
mulcomd |
|- ( ph -> ( ( R + 1 ) x. 2 ) = ( 2 x. ( R + 1 ) ) ) |
| 158 |
157
|
oveq1d |
|- ( ph -> ( ( ( R + 1 ) x. 2 ) / ( N ^ 2 ) ) = ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) |
| 159 |
156 158
|
eqtr2d |
|- ( ph -> ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) = ( ( R + 1 ) / ( ( N ^ 2 ) / 2 ) ) ) |
| 160 |
151 159
|
breqtrrd |
|- ( ph -> ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) <_ ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) |
| 161 |
117 37 30 118 160
|
lemul2ad |
|- ( ph -> ( R x. ( ( R + 1 ) / ( ( N - R ) x. ( N + 1 ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) |
| 162 |
115 161
|
eqbrtrrd |
|- ( ph -> ( ( R x. ( ( 1 / N ) - ( 1 / ( N + 1 ) ) ) ) + ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) |
| 163 |
29 58 38 95 162
|
letrd |
|- ( ph -> ( ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( A / N ) ) ) + ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) |
| 164 |
24 29 38 39 163
|
letrd |
|- ( ph -> ( abs ` ( ( A x. ( log ` ( ( N + 1 ) / N ) ) ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 2 x. ( R + 1 ) ) / ( N ^ 2 ) ) ) ) |