Step |
Hyp |
Ref |
Expression |
1 |
|
lgamgulm.r |
|- ( ph -> R e. NN ) |
2 |
|
lgamgulm.u |
|- U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } |
3 |
|
lgamgulm.n |
|- ( ph -> N e. NN ) |
4 |
|
lgamgulm.a |
|- ( ph -> A e. U ) |
5 |
|
lgamgulm.l |
|- ( ph -> ( 2 x. R ) <_ N ) |
6 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
7 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
8 |
|
0red |
|- ( ph -> 0 e. RR ) |
9 |
|
1red |
|- ( ph -> 1 e. RR ) |
10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
11 |
10
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
12 |
11
|
a1i |
|- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
13 |
1 2
|
lgamgulmlem1 |
|- ( ph -> U C_ ( CC \ ( ZZ \ NN ) ) ) |
14 |
13 4
|
sseldd |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
15 |
14
|
eldifad |
|- ( ph -> A e. CC ) |
16 |
3
|
nnred |
|- ( ph -> N e. RR ) |
17 |
16
|
recnd |
|- ( ph -> N e. CC ) |
18 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
19 |
15 17 18
|
divcld |
|- ( ph -> ( A / N ) e. CC ) |
20 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
21 |
|
ax-resscn |
|- RR C_ CC |
22 |
20 21
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
23 |
22
|
a1i |
|- ( ph -> ( 0 [,] 1 ) C_ CC ) |
24 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
25 |
|
cncfmptc |
|- ( ( ( A / N ) e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> ( A / N ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
26 |
19 23 24 25
|
syl3anc |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( A / N ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
27 |
|
cncfmptid |
|- ( ( ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
28 |
22 24 27
|
sylancr |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
29 |
26 28
|
mulcncf |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( A / N ) x. t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
30 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
31 |
30
|
logcn |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
32 |
31
|
a1i |
|- ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) |
33 |
|
cncff |
|- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) |
34 |
32 33
|
syl |
|- ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) |
35 |
19
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( A / N ) e. CC ) |
36 |
|
simpr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) |
37 |
20 36
|
sselid |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. RR ) |
38 |
37
|
recnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. CC ) |
39 |
35 38
|
mulcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( A / N ) x. t ) e. CC ) |
40 |
|
1cnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 1 e. CC ) |
41 |
39 40
|
addcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) |
42 |
|
rere |
|- ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) + 1 ) ) |
43 |
42
|
adantl |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) + 1 ) ) |
44 |
41
|
recld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR ) |
45 |
39
|
recld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( A / N ) x. t ) ) e. RR ) |
46 |
45
|
recnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( A / N ) x. t ) ) e. CC ) |
47 |
46
|
abscld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) e. RR ) |
48 |
39
|
abscld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) e. RR ) |
49 |
|
1red |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
50 |
|
absrele |
|- ( ( ( A / N ) x. t ) e. CC -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) <_ ( abs ` ( ( A / N ) x. t ) ) ) |
51 |
39 50
|
syl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) <_ ( abs ` ( ( A / N ) x. t ) ) ) |
52 |
49
|
rehalfcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 / 2 ) e. RR ) |
53 |
1
|
nnred |
|- ( ph -> R e. RR ) |
54 |
53
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> R e. RR ) |
55 |
3
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> N e. NN ) |
56 |
54 55
|
nndivred |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) e. RR ) |
57 |
19
|
abscld |
|- ( ph -> ( abs ` ( A / N ) ) e. RR ) |
58 |
57
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( A / N ) ) e. RR ) |
59 |
35
|
absge0d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 <_ ( abs ` ( A / N ) ) ) |
60 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
61 |
60
|
simp2bi |
|- ( t e. ( 0 [,] 1 ) -> 0 <_ t ) |
62 |
61
|
adantl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 <_ t ) |
63 |
15 17 18
|
absdivd |
|- ( ph -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / ( abs ` N ) ) ) |
64 |
3
|
nnrpd |
|- ( ph -> N e. RR+ ) |
65 |
64
|
rpge0d |
|- ( ph -> 0 <_ N ) |
66 |
16 65
|
absidd |
|- ( ph -> ( abs ` N ) = N ) |
67 |
66
|
oveq2d |
|- ( ph -> ( ( abs ` A ) / ( abs ` N ) ) = ( ( abs ` A ) / N ) ) |
68 |
63 67
|
eqtr2d |
|- ( ph -> ( ( abs ` A ) / N ) = ( abs ` ( A / N ) ) ) |
69 |
15
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
70 |
|
fveq2 |
|- ( x = A -> ( abs ` x ) = ( abs ` A ) ) |
71 |
70
|
breq1d |
|- ( x = A -> ( ( abs ` x ) <_ R <-> ( abs ` A ) <_ R ) ) |
72 |
|
fvoveq1 |
|- ( x = A -> ( abs ` ( x + k ) ) = ( abs ` ( A + k ) ) ) |
73 |
72
|
breq2d |
|- ( x = A -> ( ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
74 |
73
|
ralbidv |
|- ( x = A -> ( A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
75 |
71 74
|
anbi12d |
|- ( x = A -> ( ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) |
76 |
75 2
|
elrab2 |
|- ( A e. U <-> ( A e. CC /\ ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) |
77 |
76
|
simprbi |
|- ( A e. U -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
78 |
4 77
|
syl |
|- ( ph -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
79 |
78
|
simpld |
|- ( ph -> ( abs ` A ) <_ R ) |
80 |
69 53 64 79
|
lediv1dd |
|- ( ph -> ( ( abs ` A ) / N ) <_ ( R / N ) ) |
81 |
68 80
|
eqbrtrrd |
|- ( ph -> ( abs ` ( A / N ) ) <_ ( R / N ) ) |
82 |
81
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( A / N ) ) <_ ( R / N ) ) |
83 |
60
|
simp3bi |
|- ( t e. ( 0 [,] 1 ) -> t <_ 1 ) |
84 |
83
|
adantl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t <_ 1 ) |
85 |
58 56 37 49 59 62 82 84
|
lemul12ad |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. t ) <_ ( ( R / N ) x. 1 ) ) |
86 |
35 38
|
absmuld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) = ( ( abs ` ( A / N ) ) x. ( abs ` t ) ) ) |
87 |
37 62
|
absidd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` t ) = t ) |
88 |
87
|
oveq2d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. ( abs ` t ) ) = ( ( abs ` ( A / N ) ) x. t ) ) |
89 |
86 88
|
eqtr2d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. t ) = ( abs ` ( ( A / N ) x. t ) ) ) |
90 |
56
|
recnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) e. CC ) |
91 |
90
|
mulid1d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( R / N ) x. 1 ) = ( R / N ) ) |
92 |
85 89 91
|
3brtr3d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) ) |
93 |
|
2rp |
|- 2 e. RR+ |
94 |
93
|
a1i |
|- ( ph -> 2 e. RR+ ) |
95 |
53 16 94
|
lemuldiv2d |
|- ( ph -> ( ( 2 x. R ) <_ N <-> R <_ ( N / 2 ) ) ) |
96 |
5 95
|
mpbid |
|- ( ph -> R <_ ( N / 2 ) ) |
97 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
98 |
|
2ne0 |
|- 2 =/= 0 |
99 |
98
|
a1i |
|- ( ph -> 2 =/= 0 ) |
100 |
17 97 99
|
divrecd |
|- ( ph -> ( N / 2 ) = ( N x. ( 1 / 2 ) ) ) |
101 |
96 100
|
breqtrd |
|- ( ph -> R <_ ( N x. ( 1 / 2 ) ) ) |
102 |
9
|
rehalfcld |
|- ( ph -> ( 1 / 2 ) e. RR ) |
103 |
53 102 64
|
ledivmuld |
|- ( ph -> ( ( R / N ) <_ ( 1 / 2 ) <-> R <_ ( N x. ( 1 / 2 ) ) ) ) |
104 |
101 103
|
mpbird |
|- ( ph -> ( R / N ) <_ ( 1 / 2 ) ) |
105 |
104
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) <_ ( 1 / 2 ) ) |
106 |
48 56 52 92 105
|
letrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( 1 / 2 ) ) |
107 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
108 |
107
|
a1i |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 / 2 ) < 1 ) |
109 |
48 52 49 106 108
|
lelttrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) < 1 ) |
110 |
47 48 49 51 109
|
lelttrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) < 1 ) |
111 |
45 49
|
absltd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) < 1 <-> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) /\ ( Re ` ( ( A / N ) x. t ) ) < 1 ) ) ) |
112 |
110 111
|
mpbid |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) /\ ( Re ` ( ( A / N ) x. t ) ) < 1 ) ) |
113 |
112
|
simpld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> -u 1 < ( Re ` ( ( A / N ) x. t ) ) ) |
114 |
49
|
renegcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> -u 1 e. RR ) |
115 |
114 45
|
posdifd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) <-> 0 < ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) ) ) |
116 |
113 115
|
mpbid |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) ) |
117 |
46 40
|
subnegd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) |
118 |
116 117
|
breqtrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) |
119 |
39 40
|
readdd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + ( Re ` 1 ) ) ) |
120 |
|
re1 |
|- ( Re ` 1 ) = 1 |
121 |
120
|
oveq2i |
|- ( ( Re ` ( ( A / N ) x. t ) ) + ( Re ` 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) |
122 |
119 121
|
eqtrdi |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) |
123 |
118 122
|
breqtrrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) ) |
124 |
44 123
|
elrpd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR+ ) |
125 |
124
|
adantr |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR+ ) |
126 |
43 125
|
eqeltrrd |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) |
127 |
126
|
ex |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) ) |
128 |
30
|
ellogdm |
|- ( ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) <-> ( ( ( ( A / N ) x. t ) + 1 ) e. CC /\ ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) ) ) |
129 |
41 127 128
|
sylanbrc |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
130 |
34 129
|
cofmpt |
|- ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
131 |
129
|
fvresd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) |
132 |
131
|
mpteq2dva |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
133 |
130 132
|
eqtrd |
|- ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
134 |
129
|
fmpttd |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) |
135 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
136 |
10
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
137 |
136
|
a1i |
|- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
138 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
139 |
|
cncfmptc |
|- ( ( 1 e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
140 |
138 23 24 139
|
syl3anc |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
141 |
10 137 29 140
|
cncfmpt2f |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
142 |
|
cncffvrn |
|- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) ) |
143 |
135 141 142
|
sylancr |
|- ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) ) |
144 |
134 143
|
mpbird |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) ) |
145 |
144 32
|
cncfco |
|- ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
146 |
133 145
|
eqeltrrd |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
147 |
10 12 29 146
|
cncfmpt2f |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
148 |
21
|
a1i |
|- ( ph -> RR C_ CC ) |
149 |
20
|
a1i |
|- ( ph -> ( 0 [,] 1 ) C_ RR ) |
150 |
30
|
logdmn0 |
|- ( ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) |
151 |
129 150
|
syl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) |
152 |
41 151
|
logcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) |
153 |
39 152
|
subcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) e. CC ) |
154 |
10
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
155 |
|
0re |
|- 0 e. RR |
156 |
|
iccntr |
|- ( ( 0 e. RR /\ 1 e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
157 |
155 9 156
|
sylancr |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
158 |
148 149 153 154 10 157
|
dvmptntr |
|- ( ph -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
159 |
|
reelprrecn |
|- RR e. { RR , CC } |
160 |
159
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
161 |
15
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> A e. CC ) |
162 |
17
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. CC ) |
163 |
18
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N =/= 0 ) |
164 |
161 162 163
|
divcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( A / N ) e. CC ) |
165 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
166 |
165
|
sseli |
|- ( t e. ( 0 (,) 1 ) -> t e. ( 0 [,] 1 ) ) |
167 |
166 38
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) |
168 |
164 167
|
mulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. t ) e. CC ) |
169 |
15
|
adantr |
|- ( ( ph /\ t e. RR ) -> A e. CC ) |
170 |
17
|
adantr |
|- ( ( ph /\ t e. RR ) -> N e. CC ) |
171 |
18
|
adantr |
|- ( ( ph /\ t e. RR ) -> N =/= 0 ) |
172 |
169 170 171
|
divcld |
|- ( ( ph /\ t e. RR ) -> ( A / N ) e. CC ) |
173 |
148
|
sselda |
|- ( ( ph /\ t e. RR ) -> t e. CC ) |
174 |
172 173
|
mulcld |
|- ( ( ph /\ t e. RR ) -> ( ( A / N ) x. t ) e. CC ) |
175 |
|
1cnd |
|- ( ( ph /\ t e. RR ) -> 1 e. CC ) |
176 |
160
|
dvmptid |
|- ( ph -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
177 |
160 173 175 176 19
|
dvmptcmul |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( A / N ) x. t ) ) ) = ( t e. RR |-> ( ( A / N ) x. 1 ) ) ) |
178 |
19
|
mulid1d |
|- ( ph -> ( ( A / N ) x. 1 ) = ( A / N ) ) |
179 |
178
|
mpteq2dv |
|- ( ph -> ( t e. RR |-> ( ( A / N ) x. 1 ) ) = ( t e. RR |-> ( A / N ) ) ) |
180 |
177 179
|
eqtrd |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( A / N ) x. t ) ) ) = ( t e. RR |-> ( A / N ) ) ) |
181 |
165 149
|
sstrid |
|- ( ph -> ( 0 (,) 1 ) C_ RR ) |
182 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
183 |
|
iooretop |
|- ( 0 (,) 1 ) e. ( topGen ` ran (,) ) |
184 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( 0 (,) 1 ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) ) |
185 |
182 183 184
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) |
186 |
185
|
a1i |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) ) |
187 |
160 174 172 180 181 154 10 186
|
dvmptres2 |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( A / N ) ) ) |
188 |
166 152
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) |
189 |
|
1cnd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 1 e. CC ) |
190 |
168 189
|
addcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) |
191 |
166 151
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) |
192 |
190 191
|
reccld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) |
193 |
192 164
|
mulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) e. CC ) |
194 |
|
cnelprrecn |
|- CC e. { RR , CC } |
195 |
194
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
196 |
166 129
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
197 |
|
eldifi |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y e. CC ) |
198 |
197
|
adantl |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y e. CC ) |
199 |
30
|
logdmn0 |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y =/= 0 ) |
200 |
199
|
adantl |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y =/= 0 ) |
201 |
198 200
|
logcld |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( log ` y ) e. CC ) |
202 |
198 200
|
reccld |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( 1 / y ) e. CC ) |
203 |
174 175
|
addcld |
|- ( ( ph /\ t e. RR ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) |
204 |
|
0cnd |
|- ( ( ph /\ t e. RR ) -> 0 e. CC ) |
205 |
160 138
|
dvmptc |
|- ( ph -> ( RR _D ( t e. RR |-> 1 ) ) = ( t e. RR |-> 0 ) ) |
206 |
160 174 172 180 175 204 205
|
dvmptadd |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. RR |-> ( ( A / N ) + 0 ) ) ) |
207 |
19
|
addid1d |
|- ( ph -> ( ( A / N ) + 0 ) = ( A / N ) ) |
208 |
207
|
mpteq2dv |
|- ( ph -> ( t e. RR |-> ( ( A / N ) + 0 ) ) = ( t e. RR |-> ( A / N ) ) ) |
209 |
206 208
|
eqtrd |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. RR |-> ( A / N ) ) ) |
210 |
160 203 172 209 181 154 10 186
|
dvmptres2 |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( A / N ) ) ) |
211 |
34
|
feqmptd |
|- ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) ) ) |
212 |
|
fvres |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) = ( log ` y ) ) |
213 |
212
|
mpteq2ia |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) |
214 |
211 213
|
eqtr2di |
|- ( ph -> ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) = ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |
215 |
214
|
oveq2d |
|- ( ph -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) ) |
216 |
30
|
dvlog |
|- ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) |
217 |
215 216
|
eqtrdi |
|- ( ph -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) ) |
218 |
|
fveq2 |
|- ( y = ( ( ( A / N ) x. t ) + 1 ) -> ( log ` y ) = ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) |
219 |
|
oveq2 |
|- ( y = ( ( ( A / N ) x. t ) + 1 ) -> ( 1 / y ) = ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) |
220 |
160 195 196 164 201 202 210 217 218 219
|
dvmptco |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
221 |
160 168 164 187 188 193 220
|
dvmptsub |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
222 |
158 221
|
eqtrd |
|- ( ph -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
223 |
222
|
dmeqd |
|- ( ph -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = dom ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
224 |
|
ovex |
|- ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) e. _V |
225 |
|
eqid |
|- ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
226 |
224 225
|
dmmpti |
|- dom ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( 0 (,) 1 ) |
227 |
223 226
|
eqtrdi |
|- ( ph -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( 0 (,) 1 ) ) |
228 |
|
2re |
|- 2 e. RR |
229 |
228
|
a1i |
|- ( ph -> 2 e. RR ) |
230 |
229 53
|
remulcld |
|- ( ph -> ( 2 x. R ) e. RR ) |
231 |
1
|
nnrpd |
|- ( ph -> R e. RR+ ) |
232 |
53 231
|
ltaddrpd |
|- ( ph -> R < ( R + R ) ) |
233 |
53
|
recnd |
|- ( ph -> R e. CC ) |
234 |
233
|
2timesd |
|- ( ph -> ( 2 x. R ) = ( R + R ) ) |
235 |
232 234
|
breqtrrd |
|- ( ph -> R < ( 2 x. R ) ) |
236 |
53 230 16 235 5
|
ltletrd |
|- ( ph -> R < N ) |
237 |
|
difrp |
|- ( ( R e. RR /\ N e. RR ) -> ( R < N <-> ( N - R ) e. RR+ ) ) |
238 |
53 16 237
|
syl2anc |
|- ( ph -> ( R < N <-> ( N - R ) e. RR+ ) ) |
239 |
236 238
|
mpbid |
|- ( ph -> ( N - R ) e. RR+ ) |
240 |
239
|
rprecred |
|- ( ph -> ( 1 / ( N - R ) ) e. RR ) |
241 |
3
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
242 |
240 241
|
resubcld |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) |
243 |
53 242
|
remulcld |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
244 |
222
|
fveq1d |
|- ( ph -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) = ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) |
245 |
244
|
fveq2d |
|- ( ph -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) |
246 |
245
|
adantr |
|- ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) |
247 |
|
nfv |
|- F/ t ( ph /\ y e. ( 0 (,) 1 ) ) |
248 |
|
nfcv |
|- F/_ t abs |
249 |
|
nffvmpt1 |
|- F/_ t ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) |
250 |
248 249
|
nffv |
|- F/_ t ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) |
251 |
|
nfcv |
|- F/_ t <_ |
252 |
|
nfcv |
|- F/_ t ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) |
253 |
250 251 252
|
nfbr |
|- F/ t ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) |
254 |
247 253
|
nfim |
|- F/ t ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
255 |
|
eleq1w |
|- ( t = y -> ( t e. ( 0 (,) 1 ) <-> y e. ( 0 (,) 1 ) ) ) |
256 |
255
|
anbi2d |
|- ( t = y -> ( ( ph /\ t e. ( 0 (,) 1 ) ) <-> ( ph /\ y e. ( 0 (,) 1 ) ) ) ) |
257 |
|
2fveq3 |
|- ( t = y -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) |
258 |
257
|
breq1d |
|- ( t = y -> ( ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) <-> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
259 |
256 258
|
imbi12d |
|- ( t = y -> ( ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) <-> ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) ) |
260 |
|
simpr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 (,) 1 ) ) |
261 |
225
|
fvmpt2 |
|- ( ( t e. ( 0 (,) 1 ) /\ ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) e. _V ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
262 |
260 224 261
|
sylancl |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
263 |
262
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( abs ` ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
264 |
164 189 192
|
subdid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( ( ( A / N ) x. 1 ) - ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
265 |
164
|
mulid1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. 1 ) = ( A / N ) ) |
266 |
164 192
|
mulcomd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) |
267 |
265 266
|
oveq12d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. 1 ) - ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
268 |
264 267
|
eqtr2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) = ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
269 |
268
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
270 |
161 162 163
|
absdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / ( abs ` N ) ) ) |
271 |
16
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. RR ) |
272 |
65
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ N ) |
273 |
271 272
|
absidd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` N ) = N ) |
274 |
273
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) / ( abs ` N ) ) = ( ( abs ` A ) / N ) ) |
275 |
270 274
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / N ) ) |
276 |
275
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( A / N ) ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( ( abs ` A ) / N ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
277 |
189 192
|
subcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) e. CC ) |
278 |
164 277
|
absmuld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( abs ` ( A / N ) ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
279 |
69
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) e. RR ) |
280 |
279
|
recnd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) e. CC ) |
281 |
277
|
abscld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. RR ) |
282 |
281
|
recnd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. CC ) |
283 |
280 282 162 163
|
div23d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) = ( ( ( abs ` A ) / N ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
284 |
276 278 283
|
3eqtr4d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) ) |
285 |
263 269 284
|
3eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) ) |
286 |
53
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. RR ) |
287 |
240
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( N - R ) ) e. RR ) |
288 |
241
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / N ) e. RR ) |
289 |
287 288
|
resubcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) |
290 |
271 289
|
remulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
291 |
15
|
absge0d |
|- ( ph -> 0 <_ ( abs ` A ) ) |
292 |
291
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` A ) ) |
293 |
277
|
absge0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
294 |
79
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) <_ R ) |
295 |
239
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) e. RR+ ) |
296 |
231
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. RR+ ) |
297 |
295 296
|
rpdivcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) e. RR+ ) |
298 |
14
|
dmgmn0 |
|- ( ph -> A =/= 0 ) |
299 |
298
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> A =/= 0 ) |
300 |
161 162 299 163
|
divne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( A / N ) =/= 0 ) |
301 |
|
eliooord |
|- ( t e. ( 0 (,) 1 ) -> ( 0 < t /\ t < 1 ) ) |
302 |
301
|
adantl |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 0 < t /\ t < 1 ) ) |
303 |
302
|
simpld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 < t ) |
304 |
303
|
gt0ne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t =/= 0 ) |
305 |
164 167 300 304
|
mulne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. t ) =/= 0 ) |
306 |
168 305
|
reccld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( A / N ) x. t ) ) e. CC ) |
307 |
189 306
|
addcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) e. CC ) |
308 |
168 189 168 305
|
divdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) = ( ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) + ( 1 / ( ( A / N ) x. t ) ) ) ) |
309 |
168 305
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) = 1 ) |
310 |
309
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) + ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) |
311 |
308 310
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) = ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) |
312 |
190 168 191 305
|
divne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) =/= 0 ) |
313 |
311 312
|
eqnetrrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) =/= 0 ) |
314 |
307 313
|
absrpcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) e. RR+ ) |
315 |
|
1red |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 1 e. RR ) |
316 |
|
0le1 |
|- 0 <_ 1 |
317 |
316
|
a1i |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ 1 ) |
318 |
297
|
rpred |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) e. RR ) |
319 |
306
|
negcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 / ( ( A / N ) x. t ) ) e. CC ) |
320 |
319
|
abscld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) e. RR ) |
321 |
320 315
|
resubcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) e. RR ) |
322 |
307
|
abscld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) e. RR ) |
323 |
233
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. CC ) |
324 |
296
|
rpne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R =/= 0 ) |
325 |
162 323 323 324
|
divsubdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) = ( ( N / R ) - ( R / R ) ) ) |
326 |
323 324
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / R ) = 1 ) |
327 |
326
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / R ) - ( R / R ) ) = ( ( N / R ) - 1 ) ) |
328 |
325 327
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) = ( ( N / R ) - 1 ) ) |
329 |
271 296
|
rerpdivcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) e. RR ) |
330 |
323 162 324 163
|
recdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( R / N ) ) = ( N / R ) ) |
331 |
166 92
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) ) |
332 |
168 305
|
absrpcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) e. RR+ ) |
333 |
64
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. RR+ ) |
334 |
296 333
|
rpdivcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / N ) e. RR+ ) |
335 |
332 334
|
lerecd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) <-> ( 1 / ( R / N ) ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) ) |
336 |
331 335
|
mpbid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( R / N ) ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
337 |
330 336
|
eqbrtrrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
338 |
306
|
absnegd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) = ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) ) |
339 |
189 168 305
|
absdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) = ( ( abs ` 1 ) / ( abs ` ( ( A / N ) x. t ) ) ) ) |
340 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
341 |
340
|
oveq1i |
|- ( ( abs ` 1 ) / ( abs ` ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) |
342 |
339 341
|
eqtrdi |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
343 |
338 342
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
344 |
337 343
|
breqtrrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) <_ ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) ) |
345 |
329 320 315 344
|
lesub1dd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / R ) - 1 ) <_ ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) ) |
346 |
328 345
|
eqbrtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) <_ ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) ) |
347 |
340
|
oveq2i |
|- ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - ( abs ` 1 ) ) = ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) |
348 |
319 189
|
abs2difd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - ( abs ` 1 ) ) <_ ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) |
349 |
347 348
|
eqbrtrrid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) <_ ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) |
350 |
189 306
|
addcomd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) ) |
351 |
350
|
negeqd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = -u ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) ) |
352 |
306 189
|
negdi2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) = ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) |
353 |
351 352
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) |
354 |
353
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) = ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) |
355 |
307
|
absnegd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) = ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
356 |
354 355
|
eqtr3d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) = ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
357 |
349 356
|
breqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) <_ ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
358 |
318 321 322 346 357
|
letrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) <_ ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
359 |
297 314 315 317 358
|
lediv2ad |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) <_ ( 1 / ( ( N - R ) / R ) ) ) |
360 |
17 233
|
subcld |
|- ( ph -> ( N - R ) e. CC ) |
361 |
360
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) e. CC ) |
362 |
53 236
|
gtned |
|- ( ph -> N =/= R ) |
363 |
17 233 362
|
subne0d |
|- ( ph -> ( N - R ) =/= 0 ) |
364 |
363
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) =/= 0 ) |
365 |
361 323 364 324
|
recdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( N - R ) / R ) ) = ( R / ( N - R ) ) ) |
366 |
162 323
|
nncand |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - ( N - R ) ) = R ) |
367 |
366
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - ( N - R ) ) / ( N - R ) ) = ( R / ( N - R ) ) ) |
368 |
162 361 361 364
|
divsubdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - ( N - R ) ) / ( N - R ) ) = ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) ) |
369 |
367 368
|
eqtr3d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / ( N - R ) ) = ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) ) |
370 |
361 364
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / ( N - R ) ) = 1 ) |
371 |
370
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
372 |
365 369 371
|
3eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( N - R ) / R ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
373 |
359 372
|
breqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) <_ ( ( N / ( N - R ) ) - 1 ) ) |
374 |
190 189 190 191
|
divsubdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
375 |
168 189
|
pncand |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) = ( ( A / N ) x. t ) ) |
376 |
375
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) |
377 |
190 191
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = 1 ) |
378 |
377
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
379 |
374 376 378
|
3eqtr3rd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) |
380 |
190 168 191 305
|
recdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) |
381 |
311
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) ) = ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
382 |
379 380 381
|
3eqtr2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
383 |
382
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
384 |
189 307 313
|
absdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( ( abs ` 1 ) / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
385 |
340
|
oveq1i |
|- ( ( abs ` 1 ) / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
386 |
384 385
|
eqtrdi |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
387 |
383 386
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
388 |
360 363
|
reccld |
|- ( ph -> ( 1 / ( N - R ) ) e. CC ) |
389 |
388
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( N - R ) ) e. CC ) |
390 |
241
|
recnd |
|- ( ph -> ( 1 / N ) e. CC ) |
391 |
390
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / N ) e. CC ) |
392 |
162 389 391
|
subdid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( N x. ( 1 / ( N - R ) ) ) - ( N x. ( 1 / N ) ) ) ) |
393 |
162 361 364
|
divrecd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / ( N - R ) ) = ( N x. ( 1 / ( N - R ) ) ) ) |
394 |
393
|
eqcomd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( 1 / ( N - R ) ) ) = ( N / ( N - R ) ) ) |
395 |
162 163
|
recidd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( 1 / N ) ) = 1 ) |
396 |
394 395
|
oveq12d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N x. ( 1 / ( N - R ) ) ) - ( N x. ( 1 / N ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
397 |
392 396
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
398 |
373 387 397
|
3brtr4d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) <_ ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
399 |
279 286 281 290 292 293 294 398
|
lemul12ad |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( R x. ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
400 |
242
|
recnd |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) |
401 |
400
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) |
402 |
323 162 401
|
mul12d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R x. ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) = ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
403 |
399 402
|
breqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
404 |
279 281
|
remulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) e. RR ) |
405 |
243
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
406 |
404 405 333
|
ledivmuld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) <-> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) ) |
407 |
403 406
|
mpbird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
408 |
285 407
|
eqbrtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
409 |
254 259 408
|
chvarfv |
|- ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
410 |
246 409
|
eqbrtrd |
|- ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
411 |
8 9 147 227 243 410
|
dvlip |
|- ( ( ph /\ ( 1 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) <_ ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
412 |
6 7 411
|
mpanr12 |
|- ( ph -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) <_ ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
413 |
|
eqidd |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
414 |
|
oveq2 |
|- ( t = 1 -> ( ( A / N ) x. t ) = ( ( A / N ) x. 1 ) ) |
415 |
414 178
|
sylan9eqr |
|- ( ( ph /\ t = 1 ) -> ( ( A / N ) x. t ) = ( A / N ) ) |
416 |
415
|
fvoveq1d |
|- ( ( ph /\ t = 1 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` ( ( A / N ) + 1 ) ) ) |
417 |
415 416
|
oveq12d |
|- ( ( ph /\ t = 1 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) |
418 |
6
|
a1i |
|- ( ph -> 1 e. ( 0 [,] 1 ) ) |
419 |
|
ovexd |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. _V ) |
420 |
413 417 418 419
|
fvmptd |
|- ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) |
421 |
|
oveq2 |
|- ( t = 0 -> ( ( A / N ) x. t ) = ( ( A / N ) x. 0 ) ) |
422 |
19
|
mul01d |
|- ( ph -> ( ( A / N ) x. 0 ) = 0 ) |
423 |
421 422
|
sylan9eqr |
|- ( ( ph /\ t = 0 ) -> ( ( A / N ) x. t ) = 0 ) |
424 |
423
|
oveq1d |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) + 1 ) = ( 0 + 1 ) ) |
425 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
426 |
424 425
|
eqtrdi |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) + 1 ) = 1 ) |
427 |
426
|
fveq2d |
|- ( ( ph /\ t = 0 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` 1 ) ) |
428 |
|
log1 |
|- ( log ` 1 ) = 0 |
429 |
427 428
|
eqtrdi |
|- ( ( ph /\ t = 0 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = 0 ) |
430 |
423 429
|
oveq12d |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 0 - 0 ) ) |
431 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
432 |
430 431
|
eqtrdi |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = 0 ) |
433 |
7
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
434 |
413 432 433 433
|
fvmptd |
|- ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) = 0 ) |
435 |
420 434
|
oveq12d |
|- ( ph -> ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) = ( ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) - 0 ) ) |
436 |
19 138
|
addcld |
|- ( ph -> ( ( A / N ) + 1 ) e. CC ) |
437 |
14 3
|
dmgmdivn0 |
|- ( ph -> ( ( A / N ) + 1 ) =/= 0 ) |
438 |
436 437
|
logcld |
|- ( ph -> ( log ` ( ( A / N ) + 1 ) ) e. CC ) |
439 |
19 438
|
subcld |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) |
440 |
439
|
subid1d |
|- ( ph -> ( ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) - 0 ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) |
441 |
435 440
|
eqtr2d |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) = ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) |
442 |
441
|
fveq2d |
|- ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) = ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) ) |
443 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
444 |
443
|
fveq2i |
|- ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) |
445 |
444 340
|
eqtri |
|- ( abs ` ( 1 - 0 ) ) = 1 |
446 |
445
|
oveq2i |
|- ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. 1 ) |
447 |
233 400
|
mulcld |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. CC ) |
448 |
447
|
mulid1d |
|- ( ph -> ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. 1 ) = ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
449 |
446 448
|
eqtr2id |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
450 |
412 442 449
|
3brtr4d |
|- ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |