| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
|- ( ph -> R e. NN ) |
| 2 |
|
lgamgulm.u |
|- U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } |
| 3 |
|
lgamgulm.n |
|- ( ph -> N e. NN ) |
| 4 |
|
lgamgulm.a |
|- ( ph -> A e. U ) |
| 5 |
|
lgamgulm.l |
|- ( ph -> ( 2 x. R ) <_ N ) |
| 6 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 7 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 8 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 9 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 11 |
10
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 12 |
11
|
a1i |
|- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 13 |
1 2
|
lgamgulmlem1 |
|- ( ph -> U C_ ( CC \ ( ZZ \ NN ) ) ) |
| 14 |
13 4
|
sseldd |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 15 |
14
|
eldifad |
|- ( ph -> A e. CC ) |
| 16 |
3
|
nnred |
|- ( ph -> N e. RR ) |
| 17 |
16
|
recnd |
|- ( ph -> N e. CC ) |
| 18 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 19 |
15 17 18
|
divcld |
|- ( ph -> ( A / N ) e. CC ) |
| 20 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 21 |
|
ax-resscn |
|- RR C_ CC |
| 22 |
20 21
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
| 23 |
22
|
a1i |
|- ( ph -> ( 0 [,] 1 ) C_ CC ) |
| 24 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 25 |
|
cncfmptc |
|- ( ( ( A / N ) e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> ( A / N ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 26 |
19 23 24 25
|
syl3anc |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( A / N ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 27 |
|
cncfmptid |
|- ( ( ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 28 |
22 24 27
|
sylancr |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 29 |
26 28
|
mulcncf |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( A / N ) x. t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 30 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 31 |
30
|
logcn |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
| 32 |
31
|
a1i |
|- ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) |
| 33 |
|
cncff |
|- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) |
| 34 |
32 33
|
syl |
|- ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) |
| 35 |
19
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( A / N ) e. CC ) |
| 36 |
|
simpr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) |
| 37 |
20 36
|
sselid |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. RR ) |
| 38 |
37
|
recnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. CC ) |
| 39 |
35 38
|
mulcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( A / N ) x. t ) e. CC ) |
| 40 |
|
1cnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 1 e. CC ) |
| 41 |
39 40
|
addcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) |
| 42 |
|
rere |
|- ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) + 1 ) ) |
| 43 |
42
|
adantl |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) + 1 ) ) |
| 44 |
41
|
recld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR ) |
| 45 |
39
|
recld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( A / N ) x. t ) ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( A / N ) x. t ) ) e. CC ) |
| 47 |
46
|
abscld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) e. RR ) |
| 48 |
39
|
abscld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) e. RR ) |
| 49 |
|
1red |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
| 50 |
|
absrele |
|- ( ( ( A / N ) x. t ) e. CC -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) <_ ( abs ` ( ( A / N ) x. t ) ) ) |
| 51 |
39 50
|
syl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) <_ ( abs ` ( ( A / N ) x. t ) ) ) |
| 52 |
49
|
rehalfcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 / 2 ) e. RR ) |
| 53 |
1
|
nnred |
|- ( ph -> R e. RR ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> R e. RR ) |
| 55 |
3
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> N e. NN ) |
| 56 |
54 55
|
nndivred |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) e. RR ) |
| 57 |
19
|
abscld |
|- ( ph -> ( abs ` ( A / N ) ) e. RR ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( A / N ) ) e. RR ) |
| 59 |
35
|
absge0d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 <_ ( abs ` ( A / N ) ) ) |
| 60 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
| 61 |
60
|
simp2bi |
|- ( t e. ( 0 [,] 1 ) -> 0 <_ t ) |
| 62 |
61
|
adantl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 <_ t ) |
| 63 |
15 17 18
|
absdivd |
|- ( ph -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / ( abs ` N ) ) ) |
| 64 |
3
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 65 |
64
|
rpge0d |
|- ( ph -> 0 <_ N ) |
| 66 |
16 65
|
absidd |
|- ( ph -> ( abs ` N ) = N ) |
| 67 |
66
|
oveq2d |
|- ( ph -> ( ( abs ` A ) / ( abs ` N ) ) = ( ( abs ` A ) / N ) ) |
| 68 |
63 67
|
eqtr2d |
|- ( ph -> ( ( abs ` A ) / N ) = ( abs ` ( A / N ) ) ) |
| 69 |
15
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
| 70 |
|
fveq2 |
|- ( x = A -> ( abs ` x ) = ( abs ` A ) ) |
| 71 |
70
|
breq1d |
|- ( x = A -> ( ( abs ` x ) <_ R <-> ( abs ` A ) <_ R ) ) |
| 72 |
|
fvoveq1 |
|- ( x = A -> ( abs ` ( x + k ) ) = ( abs ` ( A + k ) ) ) |
| 73 |
72
|
breq2d |
|- ( x = A -> ( ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 74 |
73
|
ralbidv |
|- ( x = A -> ( A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 75 |
71 74
|
anbi12d |
|- ( x = A -> ( ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) |
| 76 |
75 2
|
elrab2 |
|- ( A e. U <-> ( A e. CC /\ ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) |
| 77 |
76
|
simprbi |
|- ( A e. U -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 78 |
4 77
|
syl |
|- ( ph -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) |
| 79 |
78
|
simpld |
|- ( ph -> ( abs ` A ) <_ R ) |
| 80 |
69 53 64 79
|
lediv1dd |
|- ( ph -> ( ( abs ` A ) / N ) <_ ( R / N ) ) |
| 81 |
68 80
|
eqbrtrrd |
|- ( ph -> ( abs ` ( A / N ) ) <_ ( R / N ) ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( A / N ) ) <_ ( R / N ) ) |
| 83 |
60
|
simp3bi |
|- ( t e. ( 0 [,] 1 ) -> t <_ 1 ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t <_ 1 ) |
| 85 |
58 56 37 49 59 62 82 84
|
lemul12ad |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. t ) <_ ( ( R / N ) x. 1 ) ) |
| 86 |
35 38
|
absmuld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) = ( ( abs ` ( A / N ) ) x. ( abs ` t ) ) ) |
| 87 |
37 62
|
absidd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` t ) = t ) |
| 88 |
87
|
oveq2d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. ( abs ` t ) ) = ( ( abs ` ( A / N ) ) x. t ) ) |
| 89 |
86 88
|
eqtr2d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. t ) = ( abs ` ( ( A / N ) x. t ) ) ) |
| 90 |
56
|
recnd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) e. CC ) |
| 91 |
90
|
mulridd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( R / N ) x. 1 ) = ( R / N ) ) |
| 92 |
85 89 91
|
3brtr3d |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) ) |
| 93 |
|
2rp |
|- 2 e. RR+ |
| 94 |
93
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 95 |
53 16 94
|
lemuldiv2d |
|- ( ph -> ( ( 2 x. R ) <_ N <-> R <_ ( N / 2 ) ) ) |
| 96 |
5 95
|
mpbid |
|- ( ph -> R <_ ( N / 2 ) ) |
| 97 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 98 |
|
2ne0 |
|- 2 =/= 0 |
| 99 |
98
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 100 |
17 97 99
|
divrecd |
|- ( ph -> ( N / 2 ) = ( N x. ( 1 / 2 ) ) ) |
| 101 |
96 100
|
breqtrd |
|- ( ph -> R <_ ( N x. ( 1 / 2 ) ) ) |
| 102 |
9
|
rehalfcld |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 103 |
53 102 64
|
ledivmuld |
|- ( ph -> ( ( R / N ) <_ ( 1 / 2 ) <-> R <_ ( N x. ( 1 / 2 ) ) ) ) |
| 104 |
101 103
|
mpbird |
|- ( ph -> ( R / N ) <_ ( 1 / 2 ) ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) <_ ( 1 / 2 ) ) |
| 106 |
48 56 52 92 105
|
letrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( 1 / 2 ) ) |
| 107 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 108 |
107
|
a1i |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 / 2 ) < 1 ) |
| 109 |
48 52 49 106 108
|
lelttrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) < 1 ) |
| 110 |
47 48 49 51 109
|
lelttrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) < 1 ) |
| 111 |
45 49
|
absltd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) < 1 <-> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) /\ ( Re ` ( ( A / N ) x. t ) ) < 1 ) ) ) |
| 112 |
110 111
|
mpbid |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) /\ ( Re ` ( ( A / N ) x. t ) ) < 1 ) ) |
| 113 |
112
|
simpld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> -u 1 < ( Re ` ( ( A / N ) x. t ) ) ) |
| 114 |
49
|
renegcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> -u 1 e. RR ) |
| 115 |
114 45
|
posdifd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) <-> 0 < ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) ) ) |
| 116 |
113 115
|
mpbid |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) ) |
| 117 |
46 40
|
subnegd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) |
| 118 |
116 117
|
breqtrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) |
| 119 |
39 40
|
readdd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + ( Re ` 1 ) ) ) |
| 120 |
|
re1 |
|- ( Re ` 1 ) = 1 |
| 121 |
120
|
oveq2i |
|- ( ( Re ` ( ( A / N ) x. t ) ) + ( Re ` 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) |
| 122 |
119 121
|
eqtrdi |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) |
| 123 |
118 122
|
breqtrrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 124 |
44 123
|
elrpd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR+ ) |
| 125 |
124
|
adantr |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR+ ) |
| 126 |
43 125
|
eqeltrrd |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) |
| 127 |
126
|
ex |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) ) |
| 128 |
30
|
ellogdm |
|- ( ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) <-> ( ( ( ( A / N ) x. t ) + 1 ) e. CC /\ ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) ) ) |
| 129 |
41 127 128
|
sylanbrc |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
| 130 |
34 129
|
cofmpt |
|- ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
| 131 |
129
|
fvresd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 132 |
131
|
mpteq2dva |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
| 133 |
130 132
|
eqtrd |
|- ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
| 134 |
129
|
fmpttd |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) |
| 135 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
| 136 |
10
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 137 |
136
|
a1i |
|- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 138 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 139 |
|
cncfmptc |
|- ( ( 1 e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 140 |
138 23 24 139
|
syl3anc |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 141 |
10 137 29 140
|
cncfmpt2f |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 142 |
|
cncfcdm |
|- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) ) |
| 143 |
135 141 142
|
sylancr |
|- ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) ) |
| 144 |
134 143
|
mpbird |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) ) |
| 145 |
144 32
|
cncfco |
|- ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 146 |
133 145
|
eqeltrrd |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 147 |
10 12 29 146
|
cncfmpt2f |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 148 |
21
|
a1i |
|- ( ph -> RR C_ CC ) |
| 149 |
20
|
a1i |
|- ( ph -> ( 0 [,] 1 ) C_ RR ) |
| 150 |
30
|
logdmn0 |
|- ( ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) |
| 151 |
129 150
|
syl |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) |
| 152 |
41 151
|
logcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) |
| 153 |
39 152
|
subcld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) e. CC ) |
| 154 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 155 |
|
0re |
|- 0 e. RR |
| 156 |
|
iccntr |
|- ( ( 0 e. RR /\ 1 e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
| 157 |
155 9 156
|
sylancr |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
| 158 |
148 149 153 154 10 157
|
dvmptntr |
|- ( ph -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
| 159 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 160 |
159
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 161 |
15
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> A e. CC ) |
| 162 |
17
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. CC ) |
| 163 |
18
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N =/= 0 ) |
| 164 |
161 162 163
|
divcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( A / N ) e. CC ) |
| 165 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 166 |
165
|
sseli |
|- ( t e. ( 0 (,) 1 ) -> t e. ( 0 [,] 1 ) ) |
| 167 |
166 38
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) |
| 168 |
164 167
|
mulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. t ) e. CC ) |
| 169 |
15
|
adantr |
|- ( ( ph /\ t e. RR ) -> A e. CC ) |
| 170 |
17
|
adantr |
|- ( ( ph /\ t e. RR ) -> N e. CC ) |
| 171 |
18
|
adantr |
|- ( ( ph /\ t e. RR ) -> N =/= 0 ) |
| 172 |
169 170 171
|
divcld |
|- ( ( ph /\ t e. RR ) -> ( A / N ) e. CC ) |
| 173 |
148
|
sselda |
|- ( ( ph /\ t e. RR ) -> t e. CC ) |
| 174 |
172 173
|
mulcld |
|- ( ( ph /\ t e. RR ) -> ( ( A / N ) x. t ) e. CC ) |
| 175 |
|
1cnd |
|- ( ( ph /\ t e. RR ) -> 1 e. CC ) |
| 176 |
160
|
dvmptid |
|- ( ph -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
| 177 |
160 173 175 176 19
|
dvmptcmul |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( A / N ) x. t ) ) ) = ( t e. RR |-> ( ( A / N ) x. 1 ) ) ) |
| 178 |
19
|
mulridd |
|- ( ph -> ( ( A / N ) x. 1 ) = ( A / N ) ) |
| 179 |
178
|
mpteq2dv |
|- ( ph -> ( t e. RR |-> ( ( A / N ) x. 1 ) ) = ( t e. RR |-> ( A / N ) ) ) |
| 180 |
177 179
|
eqtrd |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( A / N ) x. t ) ) ) = ( t e. RR |-> ( A / N ) ) ) |
| 181 |
165 149
|
sstrid |
|- ( ph -> ( 0 (,) 1 ) C_ RR ) |
| 182 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 183 |
|
iooretop |
|- ( 0 (,) 1 ) e. ( topGen ` ran (,) ) |
| 184 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( 0 (,) 1 ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) ) |
| 185 |
182 183 184
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) |
| 186 |
185
|
a1i |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) ) |
| 187 |
160 174 172 180 181 154 10 186
|
dvmptres2 |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( A / N ) ) ) |
| 188 |
166 152
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) |
| 189 |
|
1cnd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 1 e. CC ) |
| 190 |
168 189
|
addcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) |
| 191 |
166 151
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) |
| 192 |
190 191
|
reccld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) |
| 193 |
192 164
|
mulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) e. CC ) |
| 194 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 195 |
194
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
| 196 |
166 129
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
| 197 |
|
eldifi |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y e. CC ) |
| 198 |
197
|
adantl |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y e. CC ) |
| 199 |
30
|
logdmn0 |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y =/= 0 ) |
| 200 |
199
|
adantl |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y =/= 0 ) |
| 201 |
198 200
|
logcld |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( log ` y ) e. CC ) |
| 202 |
198 200
|
reccld |
|- ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( 1 / y ) e. CC ) |
| 203 |
174 175
|
addcld |
|- ( ( ph /\ t e. RR ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) |
| 204 |
|
0cnd |
|- ( ( ph /\ t e. RR ) -> 0 e. CC ) |
| 205 |
160 138
|
dvmptc |
|- ( ph -> ( RR _D ( t e. RR |-> 1 ) ) = ( t e. RR |-> 0 ) ) |
| 206 |
160 174 172 180 175 204 205
|
dvmptadd |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. RR |-> ( ( A / N ) + 0 ) ) ) |
| 207 |
19
|
addridd |
|- ( ph -> ( ( A / N ) + 0 ) = ( A / N ) ) |
| 208 |
207
|
mpteq2dv |
|- ( ph -> ( t e. RR |-> ( ( A / N ) + 0 ) ) = ( t e. RR |-> ( A / N ) ) ) |
| 209 |
206 208
|
eqtrd |
|- ( ph -> ( RR _D ( t e. RR |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. RR |-> ( A / N ) ) ) |
| 210 |
160 203 172 209 181 154 10 186
|
dvmptres2 |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( A / N ) ) ) |
| 211 |
34
|
feqmptd |
|- ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) ) ) |
| 212 |
|
fvres |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) = ( log ` y ) ) |
| 213 |
212
|
mpteq2ia |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) |
| 214 |
211 213
|
eqtr2di |
|- ( ph -> ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) = ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 215 |
214
|
oveq2d |
|- ( ph -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) ) |
| 216 |
30
|
dvlog |
|- ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) |
| 217 |
215 216
|
eqtrdi |
|- ( ph -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) ) |
| 218 |
|
fveq2 |
|- ( y = ( ( ( A / N ) x. t ) + 1 ) -> ( log ` y ) = ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 219 |
|
oveq2 |
|- ( y = ( ( ( A / N ) x. t ) + 1 ) -> ( 1 / y ) = ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 220 |
160 195 196 164 201 202 210 217 218 219
|
dvmptco |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
| 221 |
160 168 164 187 188 193 220
|
dvmptsub |
|- ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
| 222 |
158 221
|
eqtrd |
|- ( ph -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
| 223 |
222
|
dmeqd |
|- ( ph -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = dom ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
| 224 |
|
ovex |
|- ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) e. _V |
| 225 |
|
eqid |
|- ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
| 226 |
224 225
|
dmmpti |
|- dom ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( 0 (,) 1 ) |
| 227 |
223 226
|
eqtrdi |
|- ( ph -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( 0 (,) 1 ) ) |
| 228 |
|
2re |
|- 2 e. RR |
| 229 |
228
|
a1i |
|- ( ph -> 2 e. RR ) |
| 230 |
229 53
|
remulcld |
|- ( ph -> ( 2 x. R ) e. RR ) |
| 231 |
1
|
nnrpd |
|- ( ph -> R e. RR+ ) |
| 232 |
53 231
|
ltaddrpd |
|- ( ph -> R < ( R + R ) ) |
| 233 |
53
|
recnd |
|- ( ph -> R e. CC ) |
| 234 |
233
|
2timesd |
|- ( ph -> ( 2 x. R ) = ( R + R ) ) |
| 235 |
232 234
|
breqtrrd |
|- ( ph -> R < ( 2 x. R ) ) |
| 236 |
53 230 16 235 5
|
ltletrd |
|- ( ph -> R < N ) |
| 237 |
|
difrp |
|- ( ( R e. RR /\ N e. RR ) -> ( R < N <-> ( N - R ) e. RR+ ) ) |
| 238 |
53 16 237
|
syl2anc |
|- ( ph -> ( R < N <-> ( N - R ) e. RR+ ) ) |
| 239 |
236 238
|
mpbid |
|- ( ph -> ( N - R ) e. RR+ ) |
| 240 |
239
|
rprecred |
|- ( ph -> ( 1 / ( N - R ) ) e. RR ) |
| 241 |
3
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
| 242 |
240 241
|
resubcld |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) |
| 243 |
53 242
|
remulcld |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
| 244 |
222
|
fveq1d |
|- ( ph -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) = ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) |
| 245 |
244
|
fveq2d |
|- ( ph -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) |
| 246 |
245
|
adantr |
|- ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) |
| 247 |
|
nfv |
|- F/ t ( ph /\ y e. ( 0 (,) 1 ) ) |
| 248 |
|
nfcv |
|- F/_ t abs |
| 249 |
|
nffvmpt1 |
|- F/_ t ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) |
| 250 |
248 249
|
nffv |
|- F/_ t ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) |
| 251 |
|
nfcv |
|- F/_ t <_ |
| 252 |
|
nfcv |
|- F/_ t ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) |
| 253 |
250 251 252
|
nfbr |
|- F/ t ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) |
| 254 |
247 253
|
nfim |
|- F/ t ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 255 |
|
eleq1w |
|- ( t = y -> ( t e. ( 0 (,) 1 ) <-> y e. ( 0 (,) 1 ) ) ) |
| 256 |
255
|
anbi2d |
|- ( t = y -> ( ( ph /\ t e. ( 0 (,) 1 ) ) <-> ( ph /\ y e. ( 0 (,) 1 ) ) ) ) |
| 257 |
|
2fveq3 |
|- ( t = y -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) |
| 258 |
257
|
breq1d |
|- ( t = y -> ( ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) <-> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 259 |
256 258
|
imbi12d |
|- ( t = y -> ( ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) <-> ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) ) |
| 260 |
|
simpr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 (,) 1 ) ) |
| 261 |
225
|
fvmpt2 |
|- ( ( t e. ( 0 (,) 1 ) /\ ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) e. _V ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
| 262 |
260 224 261
|
sylancl |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
| 263 |
262
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( abs ` ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) |
| 264 |
164 189 192
|
subdid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( ( ( A / N ) x. 1 ) - ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
| 265 |
164
|
mulridd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. 1 ) = ( A / N ) ) |
| 266 |
164 192
|
mulcomd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) |
| 267 |
265 266
|
oveq12d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. 1 ) - ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) |
| 268 |
264 267
|
eqtr2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) = ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
| 269 |
268
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
| 270 |
161 162 163
|
absdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / ( abs ` N ) ) ) |
| 271 |
16
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. RR ) |
| 272 |
65
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ N ) |
| 273 |
271 272
|
absidd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` N ) = N ) |
| 274 |
273
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) / ( abs ` N ) ) = ( ( abs ` A ) / N ) ) |
| 275 |
270 274
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / N ) ) |
| 276 |
275
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( A / N ) ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( ( abs ` A ) / N ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
| 277 |
189 192
|
subcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) e. CC ) |
| 278 |
164 277
|
absmuld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( abs ` ( A / N ) ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
| 279 |
69
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) e. RR ) |
| 280 |
279
|
recnd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) e. CC ) |
| 281 |
277
|
abscld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. RR ) |
| 282 |
281
|
recnd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. CC ) |
| 283 |
280 282 162 163
|
div23d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) = ( ( ( abs ` A ) / N ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) |
| 284 |
276 278 283
|
3eqtr4d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) ) |
| 285 |
263 269 284
|
3eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) ) |
| 286 |
53
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. RR ) |
| 287 |
240
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( N - R ) ) e. RR ) |
| 288 |
241
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / N ) e. RR ) |
| 289 |
287 288
|
resubcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) |
| 290 |
271 289
|
remulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
| 291 |
15
|
absge0d |
|- ( ph -> 0 <_ ( abs ` A ) ) |
| 292 |
291
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` A ) ) |
| 293 |
277
|
absge0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
| 294 |
79
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) <_ R ) |
| 295 |
239
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) e. RR+ ) |
| 296 |
231
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. RR+ ) |
| 297 |
295 296
|
rpdivcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) e. RR+ ) |
| 298 |
14
|
dmgmn0 |
|- ( ph -> A =/= 0 ) |
| 299 |
298
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> A =/= 0 ) |
| 300 |
161 162 299 163
|
divne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( A / N ) =/= 0 ) |
| 301 |
|
eliooord |
|- ( t e. ( 0 (,) 1 ) -> ( 0 < t /\ t < 1 ) ) |
| 302 |
301
|
adantl |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 0 < t /\ t < 1 ) ) |
| 303 |
302
|
simpld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 < t ) |
| 304 |
303
|
gt0ne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t =/= 0 ) |
| 305 |
164 167 300 304
|
mulne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. t ) =/= 0 ) |
| 306 |
168 305
|
reccld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( A / N ) x. t ) ) e. CC ) |
| 307 |
189 306
|
addcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) e. CC ) |
| 308 |
168 189 168 305
|
divdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) = ( ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) + ( 1 / ( ( A / N ) x. t ) ) ) ) |
| 309 |
168 305
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) = 1 ) |
| 310 |
309
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) + ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) |
| 311 |
308 310
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) = ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) |
| 312 |
190 168 191 305
|
divne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) =/= 0 ) |
| 313 |
311 312
|
eqnetrrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) =/= 0 ) |
| 314 |
307 313
|
absrpcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) e. RR+ ) |
| 315 |
|
1red |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 1 e. RR ) |
| 316 |
|
0le1 |
|- 0 <_ 1 |
| 317 |
316
|
a1i |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ 1 ) |
| 318 |
297
|
rpred |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) e. RR ) |
| 319 |
306
|
negcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 / ( ( A / N ) x. t ) ) e. CC ) |
| 320 |
319
|
abscld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) e. RR ) |
| 321 |
320 315
|
resubcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) e. RR ) |
| 322 |
307
|
abscld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) e. RR ) |
| 323 |
233
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. CC ) |
| 324 |
296
|
rpne0d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R =/= 0 ) |
| 325 |
162 323 323 324
|
divsubdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) = ( ( N / R ) - ( R / R ) ) ) |
| 326 |
323 324
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / R ) = 1 ) |
| 327 |
326
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / R ) - ( R / R ) ) = ( ( N / R ) - 1 ) ) |
| 328 |
325 327
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) = ( ( N / R ) - 1 ) ) |
| 329 |
271 296
|
rerpdivcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) e. RR ) |
| 330 |
323 162 324 163
|
recdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( R / N ) ) = ( N / R ) ) |
| 331 |
166 92
|
sylan2 |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) ) |
| 332 |
168 305
|
absrpcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) e. RR+ ) |
| 333 |
64
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. RR+ ) |
| 334 |
296 333
|
rpdivcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / N ) e. RR+ ) |
| 335 |
332 334
|
lerecd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) <-> ( 1 / ( R / N ) ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) ) |
| 336 |
331 335
|
mpbid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( R / N ) ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
| 337 |
330 336
|
eqbrtrrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
| 338 |
306
|
absnegd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) = ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) ) |
| 339 |
189 168 305
|
absdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) = ( ( abs ` 1 ) / ( abs ` ( ( A / N ) x. t ) ) ) ) |
| 340 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 341 |
340
|
oveq1i |
|- ( ( abs ` 1 ) / ( abs ` ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) |
| 342 |
339 341
|
eqtrdi |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
| 343 |
338 342
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) |
| 344 |
337 343
|
breqtrrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) <_ ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) ) |
| 345 |
329 320 315 344
|
lesub1dd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / R ) - 1 ) <_ ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) ) |
| 346 |
328 345
|
eqbrtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) <_ ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) ) |
| 347 |
340
|
oveq2i |
|- ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - ( abs ` 1 ) ) = ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) |
| 348 |
319 189
|
abs2difd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - ( abs ` 1 ) ) <_ ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) |
| 349 |
347 348
|
eqbrtrrid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) <_ ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) |
| 350 |
189 306
|
addcomd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) ) |
| 351 |
350
|
negeqd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = -u ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) ) |
| 352 |
306 189
|
negdi2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) = ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) |
| 353 |
351 352
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) |
| 354 |
353
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) = ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) |
| 355 |
307
|
absnegd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) = ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 356 |
354 355
|
eqtr3d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) = ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 357 |
349 356
|
breqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) <_ ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 358 |
318 321 322 346 357
|
letrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) <_ ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 359 |
297 314 315 317 358
|
lediv2ad |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) <_ ( 1 / ( ( N - R ) / R ) ) ) |
| 360 |
17 233
|
subcld |
|- ( ph -> ( N - R ) e. CC ) |
| 361 |
360
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) e. CC ) |
| 362 |
53 236
|
gtned |
|- ( ph -> N =/= R ) |
| 363 |
17 233 362
|
subne0d |
|- ( ph -> ( N - R ) =/= 0 ) |
| 364 |
363
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) =/= 0 ) |
| 365 |
361 323 364 324
|
recdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( N - R ) / R ) ) = ( R / ( N - R ) ) ) |
| 366 |
162 323
|
nncand |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - ( N - R ) ) = R ) |
| 367 |
366
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - ( N - R ) ) / ( N - R ) ) = ( R / ( N - R ) ) ) |
| 368 |
162 361 361 364
|
divsubdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - ( N - R ) ) / ( N - R ) ) = ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) ) |
| 369 |
367 368
|
eqtr3d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / ( N - R ) ) = ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) ) |
| 370 |
361 364
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / ( N - R ) ) = 1 ) |
| 371 |
370
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
| 372 |
365 369 371
|
3eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( N - R ) / R ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
| 373 |
359 372
|
breqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) <_ ( ( N / ( N - R ) ) - 1 ) ) |
| 374 |
190 189 190 191
|
divsubdird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
| 375 |
168 189
|
pncand |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) = ( ( A / N ) x. t ) ) |
| 376 |
375
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 377 |
190 191
|
dividd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = 1 ) |
| 378 |
377
|
oveq1d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) |
| 379 |
374 376 378
|
3eqtr3rd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 380 |
190 168 191 305
|
recdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) |
| 381 |
311
|
oveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) ) = ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 382 |
379 380 381
|
3eqtr2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 383 |
382
|
fveq2d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
| 384 |
189 307 313
|
absdivd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( ( abs ` 1 ) / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
| 385 |
340
|
oveq1i |
|- ( ( abs ` 1 ) / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) |
| 386 |
384 385
|
eqtrdi |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
| 387 |
383 386
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) |
| 388 |
360 363
|
reccld |
|- ( ph -> ( 1 / ( N - R ) ) e. CC ) |
| 389 |
388
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( N - R ) ) e. CC ) |
| 390 |
241
|
recnd |
|- ( ph -> ( 1 / N ) e. CC ) |
| 391 |
390
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / N ) e. CC ) |
| 392 |
162 389 391
|
subdid |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( N x. ( 1 / ( N - R ) ) ) - ( N x. ( 1 / N ) ) ) ) |
| 393 |
162 361 364
|
divrecd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / ( N - R ) ) = ( N x. ( 1 / ( N - R ) ) ) ) |
| 394 |
393
|
eqcomd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( 1 / ( N - R ) ) ) = ( N / ( N - R ) ) ) |
| 395 |
162 163
|
recidd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( 1 / N ) ) = 1 ) |
| 396 |
394 395
|
oveq12d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N x. ( 1 / ( N - R ) ) ) - ( N x. ( 1 / N ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
| 397 |
392 396
|
eqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) |
| 398 |
373 387 397
|
3brtr4d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) <_ ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 399 |
279 286 281 290 292 293 294 398
|
lemul12ad |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( R x. ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 400 |
242
|
recnd |
|- ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) |
| 401 |
400
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) |
| 402 |
323 162 401
|
mul12d |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R x. ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) = ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 403 |
399 402
|
breqtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) |
| 404 |
279 281
|
remulcld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) e. RR ) |
| 405 |
243
|
adantr |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) |
| 406 |
404 405 333
|
ledivmuld |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) <-> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) ) |
| 407 |
403 406
|
mpbird |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 408 |
285 407
|
eqbrtrd |
|- ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 409 |
254 259 408
|
chvarfv |
|- ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 410 |
246 409
|
eqbrtrd |
|- ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 411 |
8 9 147 227 243 410
|
dvlip |
|- ( ( ph /\ ( 1 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) <_ ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 412 |
6 7 411
|
mpanr12 |
|- ( ph -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) <_ ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 413 |
|
eqidd |
|- ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) |
| 414 |
|
oveq2 |
|- ( t = 1 -> ( ( A / N ) x. t ) = ( ( A / N ) x. 1 ) ) |
| 415 |
414 178
|
sylan9eqr |
|- ( ( ph /\ t = 1 ) -> ( ( A / N ) x. t ) = ( A / N ) ) |
| 416 |
415
|
fvoveq1d |
|- ( ( ph /\ t = 1 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` ( ( A / N ) + 1 ) ) ) |
| 417 |
415 416
|
oveq12d |
|- ( ( ph /\ t = 1 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) |
| 418 |
6
|
a1i |
|- ( ph -> 1 e. ( 0 [,] 1 ) ) |
| 419 |
|
ovexd |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. _V ) |
| 420 |
413 417 418 419
|
fvmptd |
|- ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) |
| 421 |
|
oveq2 |
|- ( t = 0 -> ( ( A / N ) x. t ) = ( ( A / N ) x. 0 ) ) |
| 422 |
19
|
mul01d |
|- ( ph -> ( ( A / N ) x. 0 ) = 0 ) |
| 423 |
421 422
|
sylan9eqr |
|- ( ( ph /\ t = 0 ) -> ( ( A / N ) x. t ) = 0 ) |
| 424 |
423
|
oveq1d |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) + 1 ) = ( 0 + 1 ) ) |
| 425 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 426 |
424 425
|
eqtrdi |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) + 1 ) = 1 ) |
| 427 |
426
|
fveq2d |
|- ( ( ph /\ t = 0 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` 1 ) ) |
| 428 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 429 |
427 428
|
eqtrdi |
|- ( ( ph /\ t = 0 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = 0 ) |
| 430 |
423 429
|
oveq12d |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 0 - 0 ) ) |
| 431 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 432 |
430 431
|
eqtrdi |
|- ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = 0 ) |
| 433 |
7
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
| 434 |
413 432 433 433
|
fvmptd |
|- ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) = 0 ) |
| 435 |
420 434
|
oveq12d |
|- ( ph -> ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) = ( ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) - 0 ) ) |
| 436 |
19 138
|
addcld |
|- ( ph -> ( ( A / N ) + 1 ) e. CC ) |
| 437 |
14 3
|
dmgmdivn0 |
|- ( ph -> ( ( A / N ) + 1 ) =/= 0 ) |
| 438 |
436 437
|
logcld |
|- ( ph -> ( log ` ( ( A / N ) + 1 ) ) e. CC ) |
| 439 |
19 438
|
subcld |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) |
| 440 |
439
|
subid1d |
|- ( ph -> ( ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) - 0 ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) |
| 441 |
435 440
|
eqtr2d |
|- ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) = ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) |
| 442 |
441
|
fveq2d |
|- ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) = ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) ) |
| 443 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 444 |
443
|
fveq2i |
|- ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) |
| 445 |
444 340
|
eqtri |
|- ( abs ` ( 1 - 0 ) ) = 1 |
| 446 |
445
|
oveq2i |
|- ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. 1 ) |
| 447 |
233 400
|
mulcld |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. CC ) |
| 448 |
447
|
mulridd |
|- ( ph -> ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. 1 ) = ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |
| 449 |
446 448
|
eqtr2id |
|- ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 450 |
412 442 449
|
3brtr4d |
|- ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |