| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r |  |-  ( ph -> R e. NN ) | 
						
							| 2 |  | lgamgulm.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 3 |  | lgamgulm.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | lgamgulm.a |  |-  ( ph -> A e. U ) | 
						
							| 5 |  | lgamgulm.l |  |-  ( ph -> ( 2 x. R ) <_ N ) | 
						
							| 6 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 7 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 8 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 9 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 10 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 11 | 10 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 13 | 1 2 | lgamgulmlem1 |  |-  ( ph -> U C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 14 | 13 4 | sseldd |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 15 | 14 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 16 | 3 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 18 | 3 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 19 | 15 17 18 | divcld |  |-  ( ph -> ( A / N ) e. CC ) | 
						
							| 20 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 21 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 22 | 20 21 | sstri |  |-  ( 0 [,] 1 ) C_ CC | 
						
							| 23 | 22 | a1i |  |-  ( ph -> ( 0 [,] 1 ) C_ CC ) | 
						
							| 24 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 25 |  | cncfmptc |  |-  ( ( ( A / N ) e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> ( A / N ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 26 | 19 23 24 25 | syl3anc |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( A / N ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 27 |  | cncfmptid |  |-  ( ( ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 28 | 22 24 27 | sylancr |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 29 | 26 28 | mulcncf |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( A / N ) x. t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 30 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 31 | 30 | logcn |  |-  ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) | 
						
							| 32 | 31 | a1i |  |-  ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) | 
						
							| 33 |  | cncff |  |-  ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) | 
						
							| 35 | 19 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( A / N ) e. CC ) | 
						
							| 36 |  | simpr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 37 | 20 36 | sselid |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. RR ) | 
						
							| 38 | 37 | recnd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. CC ) | 
						
							| 39 | 35 38 | mulcld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( A / N ) x. t ) e. CC ) | 
						
							| 40 |  | 1cnd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 1 e. CC ) | 
						
							| 41 | 39 40 | addcld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) | 
						
							| 42 |  | rere |  |-  ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) + 1 ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) + 1 ) ) | 
						
							| 44 | 41 | recld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR ) | 
						
							| 45 | 39 | recld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( A / N ) x. t ) ) e. RR ) | 
						
							| 46 | 45 | recnd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( A / N ) x. t ) ) e. CC ) | 
						
							| 47 | 46 | abscld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) e. RR ) | 
						
							| 48 | 39 | abscld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) e. RR ) | 
						
							| 49 |  | 1red |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 1 e. RR ) | 
						
							| 50 |  | absrele |  |-  ( ( ( A / N ) x. t ) e. CC -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) <_ ( abs ` ( ( A / N ) x. t ) ) ) | 
						
							| 51 | 39 50 | syl |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) <_ ( abs ` ( ( A / N ) x. t ) ) ) | 
						
							| 52 | 49 | rehalfcld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 / 2 ) e. RR ) | 
						
							| 53 | 1 | nnred |  |-  ( ph -> R e. RR ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> R e. RR ) | 
						
							| 55 | 3 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> N e. NN ) | 
						
							| 56 | 54 55 | nndivred |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) e. RR ) | 
						
							| 57 | 19 | abscld |  |-  ( ph -> ( abs ` ( A / N ) ) e. RR ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( A / N ) ) e. RR ) | 
						
							| 59 | 35 | absge0d |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 <_ ( abs ` ( A / N ) ) ) | 
						
							| 60 |  | elicc01 |  |-  ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) | 
						
							| 61 | 60 | simp2bi |  |-  ( t e. ( 0 [,] 1 ) -> 0 <_ t ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 <_ t ) | 
						
							| 63 | 15 17 18 | absdivd |  |-  ( ph -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / ( abs ` N ) ) ) | 
						
							| 64 | 3 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 65 | 64 | rpge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 66 | 16 65 | absidd |  |-  ( ph -> ( abs ` N ) = N ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ph -> ( ( abs ` A ) / ( abs ` N ) ) = ( ( abs ` A ) / N ) ) | 
						
							| 68 | 63 67 | eqtr2d |  |-  ( ph -> ( ( abs ` A ) / N ) = ( abs ` ( A / N ) ) ) | 
						
							| 69 | 15 | abscld |  |-  ( ph -> ( abs ` A ) e. RR ) | 
						
							| 70 |  | fveq2 |  |-  ( x = A -> ( abs ` x ) = ( abs ` A ) ) | 
						
							| 71 | 70 | breq1d |  |-  ( x = A -> ( ( abs ` x ) <_ R <-> ( abs ` A ) <_ R ) ) | 
						
							| 72 |  | fvoveq1 |  |-  ( x = A -> ( abs ` ( x + k ) ) = ( abs ` ( A + k ) ) ) | 
						
							| 73 | 72 | breq2d |  |-  ( x = A -> ( ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 74 | 73 | ralbidv |  |-  ( x = A -> ( A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 75 | 71 74 | anbi12d |  |-  ( x = A -> ( ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) | 
						
							| 76 | 75 2 | elrab2 |  |-  ( A e. U <-> ( A e. CC /\ ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) ) | 
						
							| 77 | 76 | simprbi |  |-  ( A e. U -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 78 | 4 77 | syl |  |-  ( ph -> ( ( abs ` A ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( A + k ) ) ) ) | 
						
							| 79 | 78 | simpld |  |-  ( ph -> ( abs ` A ) <_ R ) | 
						
							| 80 | 69 53 64 79 | lediv1dd |  |-  ( ph -> ( ( abs ` A ) / N ) <_ ( R / N ) ) | 
						
							| 81 | 68 80 | eqbrtrrd |  |-  ( ph -> ( abs ` ( A / N ) ) <_ ( R / N ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( A / N ) ) <_ ( R / N ) ) | 
						
							| 83 | 60 | simp3bi |  |-  ( t e. ( 0 [,] 1 ) -> t <_ 1 ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t <_ 1 ) | 
						
							| 85 | 58 56 37 49 59 62 82 84 | lemul12ad |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. t ) <_ ( ( R / N ) x. 1 ) ) | 
						
							| 86 | 35 38 | absmuld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) = ( ( abs ` ( A / N ) ) x. ( abs ` t ) ) ) | 
						
							| 87 | 37 62 | absidd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` t ) = t ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. ( abs ` t ) ) = ( ( abs ` ( A / N ) ) x. t ) ) | 
						
							| 89 | 86 88 | eqtr2d |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( A / N ) ) x. t ) = ( abs ` ( ( A / N ) x. t ) ) ) | 
						
							| 90 | 56 | recnd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) e. CC ) | 
						
							| 91 | 90 | mulridd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( R / N ) x. 1 ) = ( R / N ) ) | 
						
							| 92 | 85 89 91 | 3brtr3d |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) ) | 
						
							| 93 |  | 2rp |  |-  2 e. RR+ | 
						
							| 94 | 93 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 95 | 53 16 94 | lemuldiv2d |  |-  ( ph -> ( ( 2 x. R ) <_ N <-> R <_ ( N / 2 ) ) ) | 
						
							| 96 | 5 95 | mpbid |  |-  ( ph -> R <_ ( N / 2 ) ) | 
						
							| 97 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 98 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 99 | 98 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 100 | 17 97 99 | divrecd |  |-  ( ph -> ( N / 2 ) = ( N x. ( 1 / 2 ) ) ) | 
						
							| 101 | 96 100 | breqtrd |  |-  ( ph -> R <_ ( N x. ( 1 / 2 ) ) ) | 
						
							| 102 | 9 | rehalfcld |  |-  ( ph -> ( 1 / 2 ) e. RR ) | 
						
							| 103 | 53 102 64 | ledivmuld |  |-  ( ph -> ( ( R / N ) <_ ( 1 / 2 ) <-> R <_ ( N x. ( 1 / 2 ) ) ) ) | 
						
							| 104 | 101 103 | mpbird |  |-  ( ph -> ( R / N ) <_ ( 1 / 2 ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( R / N ) <_ ( 1 / 2 ) ) | 
						
							| 106 | 48 56 52 92 105 | letrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( 1 / 2 ) ) | 
						
							| 107 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 108 | 107 | a1i |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 / 2 ) < 1 ) | 
						
							| 109 | 48 52 49 106 108 | lelttrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) < 1 ) | 
						
							| 110 | 47 48 49 51 109 | lelttrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) < 1 ) | 
						
							| 111 | 45 49 | absltd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( abs ` ( Re ` ( ( A / N ) x. t ) ) ) < 1 <-> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) /\ ( Re ` ( ( A / N ) x. t ) ) < 1 ) ) ) | 
						
							| 112 | 110 111 | mpbid |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) /\ ( Re ` ( ( A / N ) x. t ) ) < 1 ) ) | 
						
							| 113 | 112 | simpld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> -u 1 < ( Re ` ( ( A / N ) x. t ) ) ) | 
						
							| 114 | 49 | renegcld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> -u 1 e. RR ) | 
						
							| 115 | 114 45 | posdifd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( -u 1 < ( Re ` ( ( A / N ) x. t ) ) <-> 0 < ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) ) ) | 
						
							| 116 | 113 115 | mpbid |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) ) | 
						
							| 117 | 46 40 | subnegd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( Re ` ( ( A / N ) x. t ) ) - -u 1 ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) | 
						
							| 118 | 116 117 | breqtrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) | 
						
							| 119 | 39 40 | readdd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + ( Re ` 1 ) ) ) | 
						
							| 120 |  | re1 |  |-  ( Re ` 1 ) = 1 | 
						
							| 121 | 120 | oveq2i |  |-  ( ( Re ` ( ( A / N ) x. t ) ) + ( Re ` 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) | 
						
							| 122 | 119 121 | eqtrdi |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) = ( ( Re ` ( ( A / N ) x. t ) ) + 1 ) ) | 
						
							| 123 | 118 122 | breqtrrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> 0 < ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 124 | 44 123 | elrpd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR+ ) | 
						
							| 125 | 124 | adantr |  |-  ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( Re ` ( ( ( A / N ) x. t ) + 1 ) ) e. RR+ ) | 
						
							| 126 | 43 125 | eqeltrrd |  |-  ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( ( ( A / N ) x. t ) + 1 ) e. RR ) -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) | 
						
							| 127 | 126 | ex |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) ) | 
						
							| 128 | 30 | ellogdm |  |-  ( ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) <-> ( ( ( ( A / N ) x. t ) + 1 ) e. CC /\ ( ( ( ( A / N ) x. t ) + 1 ) e. RR -> ( ( ( A / N ) x. t ) + 1 ) e. RR+ ) ) ) | 
						
							| 129 | 41 127 128 | sylanbrc |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 130 | 34 129 | cofmpt |  |-  ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) | 
						
							| 131 | 129 | fvresd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 132 | 131 | mpteq2dva |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) | 
						
							| 133 | 130 132 | eqtrd |  |-  ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) | 
						
							| 134 | 129 | fmpttd |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 135 |  | difss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ CC | 
						
							| 136 | 10 | addcn |  |-  + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 137 | 136 | a1i |  |-  ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 138 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 139 |  | cncfmptc |  |-  ( ( 1 e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 140 | 138 23 24 139 | syl3anc |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 141 | 10 137 29 140 | cncfmpt2f |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 142 |  | cncfcdm |  |-  ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 143 | 135 141 142 | sylancr |  |-  ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) : ( 0 [,] 1 ) --> ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 144 | 134 143 | mpbird |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) e. ( ( 0 [,] 1 ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 145 | 144 32 | cncfco |  |-  ( ph -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 146 | 133 145 | eqeltrrd |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 147 | 10 12 29 146 | cncfmpt2f |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 148 | 21 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 149 | 20 | a1i |  |-  ( ph -> ( 0 [,] 1 ) C_ RR ) | 
						
							| 150 | 30 | logdmn0 |  |-  ( ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) | 
						
							| 151 | 129 150 | syl |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) | 
						
							| 152 | 41 151 | logcld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) | 
						
							| 153 | 39 152 | subcld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) e. CC ) | 
						
							| 154 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 155 |  | 0re |  |-  0 e. RR | 
						
							| 156 |  | iccntr |  |-  ( ( 0 e. RR /\ 1 e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) | 
						
							| 157 | 155 9 156 | sylancr |  |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) | 
						
							| 158 | 148 149 153 154 10 157 | dvmptntr |  |-  ( ph -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) | 
						
							| 159 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 160 | 159 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 161 | 15 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> A e. CC ) | 
						
							| 162 | 17 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. CC ) | 
						
							| 163 | 18 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N =/= 0 ) | 
						
							| 164 | 161 162 163 | divcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( A / N ) e. CC ) | 
						
							| 165 |  | ioossicc |  |-  ( 0 (,) 1 ) C_ ( 0 [,] 1 ) | 
						
							| 166 | 165 | sseli |  |-  ( t e. ( 0 (,) 1 ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 167 | 166 38 | sylan2 |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) | 
						
							| 168 | 164 167 | mulcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. t ) e. CC ) | 
						
							| 169 | 15 | adantr |  |-  ( ( ph /\ t e. RR ) -> A e. CC ) | 
						
							| 170 | 17 | adantr |  |-  ( ( ph /\ t e. RR ) -> N e. CC ) | 
						
							| 171 | 18 | adantr |  |-  ( ( ph /\ t e. RR ) -> N =/= 0 ) | 
						
							| 172 | 169 170 171 | divcld |  |-  ( ( ph /\ t e. RR ) -> ( A / N ) e. CC ) | 
						
							| 173 | 148 | sselda |  |-  ( ( ph /\ t e. RR ) -> t e. CC ) | 
						
							| 174 | 172 173 | mulcld |  |-  ( ( ph /\ t e. RR ) -> ( ( A / N ) x. t ) e. CC ) | 
						
							| 175 |  | 1cnd |  |-  ( ( ph /\ t e. RR ) -> 1 e. CC ) | 
						
							| 176 | 160 | dvmptid |  |-  ( ph -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) | 
						
							| 177 | 160 173 175 176 19 | dvmptcmul |  |-  ( ph -> ( RR _D ( t e. RR |-> ( ( A / N ) x. t ) ) ) = ( t e. RR |-> ( ( A / N ) x. 1 ) ) ) | 
						
							| 178 | 19 | mulridd |  |-  ( ph -> ( ( A / N ) x. 1 ) = ( A / N ) ) | 
						
							| 179 | 178 | mpteq2dv |  |-  ( ph -> ( t e. RR |-> ( ( A / N ) x. 1 ) ) = ( t e. RR |-> ( A / N ) ) ) | 
						
							| 180 | 177 179 | eqtrd |  |-  ( ph -> ( RR _D ( t e. RR |-> ( ( A / N ) x. t ) ) ) = ( t e. RR |-> ( A / N ) ) ) | 
						
							| 181 | 165 149 | sstrid |  |-  ( ph -> ( 0 (,) 1 ) C_ RR ) | 
						
							| 182 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 183 |  | iooretop |  |-  ( 0 (,) 1 ) e. ( topGen ` ran (,) ) | 
						
							| 184 |  | isopn3i |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( 0 (,) 1 ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) ) | 
						
							| 185 | 182 183 184 | mp2an |  |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) | 
						
							| 186 | 185 | a1i |  |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 (,) 1 ) ) = ( 0 (,) 1 ) ) | 
						
							| 187 | 160 174 172 180 181 154 10 186 | dvmptres2 |  |-  ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( A / N ) ) ) | 
						
							| 188 | 166 152 | sylan2 |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) | 
						
							| 189 |  | 1cnd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 1 e. CC ) | 
						
							| 190 | 168 189 | addcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) | 
						
							| 191 | 166 151 | sylan2 |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) =/= 0 ) | 
						
							| 192 | 190 191 | reccld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) e. CC ) | 
						
							| 193 | 192 164 | mulcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) e. CC ) | 
						
							| 194 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 195 | 194 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
						
							| 196 | 166 129 | sylan2 |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 197 |  | eldifi |  |-  ( y e. ( CC \ ( -oo (,] 0 ) ) -> y e. CC ) | 
						
							| 198 | 197 | adantl |  |-  ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y e. CC ) | 
						
							| 199 | 30 | logdmn0 |  |-  ( y e. ( CC \ ( -oo (,] 0 ) ) -> y =/= 0 ) | 
						
							| 200 | 199 | adantl |  |-  ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y =/= 0 ) | 
						
							| 201 | 198 200 | logcld |  |-  ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( log ` y ) e. CC ) | 
						
							| 202 | 198 200 | reccld |  |-  ( ( ph /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( 1 / y ) e. CC ) | 
						
							| 203 | 174 175 | addcld |  |-  ( ( ph /\ t e. RR ) -> ( ( ( A / N ) x. t ) + 1 ) e. CC ) | 
						
							| 204 |  | 0cnd |  |-  ( ( ph /\ t e. RR ) -> 0 e. CC ) | 
						
							| 205 | 160 138 | dvmptc |  |-  ( ph -> ( RR _D ( t e. RR |-> 1 ) ) = ( t e. RR |-> 0 ) ) | 
						
							| 206 | 160 174 172 180 175 204 205 | dvmptadd |  |-  ( ph -> ( RR _D ( t e. RR |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. RR |-> ( ( A / N ) + 0 ) ) ) | 
						
							| 207 | 19 | addridd |  |-  ( ph -> ( ( A / N ) + 0 ) = ( A / N ) ) | 
						
							| 208 | 207 | mpteq2dv |  |-  ( ph -> ( t e. RR |-> ( ( A / N ) + 0 ) ) = ( t e. RR |-> ( A / N ) ) ) | 
						
							| 209 | 206 208 | eqtrd |  |-  ( ph -> ( RR _D ( t e. RR |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. RR |-> ( A / N ) ) ) | 
						
							| 210 | 160 203 172 209 181 154 10 186 | dvmptres2 |  |-  ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) + 1 ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( A / N ) ) ) | 
						
							| 211 | 34 | feqmptd |  |-  ( ph -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) ) ) | 
						
							| 212 |  | fvres |  |-  ( y e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) = ( log ` y ) ) | 
						
							| 213 | 212 | mpteq2ia |  |-  ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` y ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) | 
						
							| 214 | 211 213 | eqtr2di |  |-  ( ph -> ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) = ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 215 | 214 | oveq2d |  |-  ( ph -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) ) | 
						
							| 216 | 30 | dvlog |  |-  ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) | 
						
							| 217 | 215 216 | eqtrdi |  |-  ( ph -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) ) | 
						
							| 218 |  | fveq2 |  |-  ( y = ( ( ( A / N ) x. t ) + 1 ) -> ( log ` y ) = ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 219 |  | oveq2 |  |-  ( y = ( ( ( A / N ) x. t ) + 1 ) -> ( 1 / y ) = ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 220 | 160 195 196 164 201 202 210 217 218 219 | dvmptco |  |-  ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) | 
						
							| 221 | 160 168 164 187 188 193 220 | dvmptsub |  |-  ( ph -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) | 
						
							| 222 | 158 221 | eqtrd |  |-  ( ph -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) | 
						
							| 223 | 222 | dmeqd |  |-  ( ph -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = dom ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) | 
						
							| 224 |  | ovex |  |-  ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) e. _V | 
						
							| 225 |  | eqid |  |-  ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) | 
						
							| 226 | 224 225 | dmmpti |  |-  dom ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( 0 (,) 1 ) | 
						
							| 227 | 223 226 | eqtrdi |  |-  ( ph -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( 0 (,) 1 ) ) | 
						
							| 228 |  | 2re |  |-  2 e. RR | 
						
							| 229 | 228 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 230 | 229 53 | remulcld |  |-  ( ph -> ( 2 x. R ) e. RR ) | 
						
							| 231 | 1 | nnrpd |  |-  ( ph -> R e. RR+ ) | 
						
							| 232 | 53 231 | ltaddrpd |  |-  ( ph -> R < ( R + R ) ) | 
						
							| 233 | 53 | recnd |  |-  ( ph -> R e. CC ) | 
						
							| 234 | 233 | 2timesd |  |-  ( ph -> ( 2 x. R ) = ( R + R ) ) | 
						
							| 235 | 232 234 | breqtrrd |  |-  ( ph -> R < ( 2 x. R ) ) | 
						
							| 236 | 53 230 16 235 5 | ltletrd |  |-  ( ph -> R < N ) | 
						
							| 237 |  | difrp |  |-  ( ( R e. RR /\ N e. RR ) -> ( R < N <-> ( N - R ) e. RR+ ) ) | 
						
							| 238 | 53 16 237 | syl2anc |  |-  ( ph -> ( R < N <-> ( N - R ) e. RR+ ) ) | 
						
							| 239 | 236 238 | mpbid |  |-  ( ph -> ( N - R ) e. RR+ ) | 
						
							| 240 | 239 | rprecred |  |-  ( ph -> ( 1 / ( N - R ) ) e. RR ) | 
						
							| 241 | 3 | nnrecred |  |-  ( ph -> ( 1 / N ) e. RR ) | 
						
							| 242 | 240 241 | resubcld |  |-  ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) | 
						
							| 243 | 53 242 | remulcld |  |-  ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) | 
						
							| 244 | 222 | fveq1d |  |-  ( ph -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) = ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) | 
						
							| 245 | 244 | fveq2d |  |-  ( ph -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) | 
						
							| 246 | 245 | adantr |  |-  ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) | 
						
							| 247 |  | nfv |  |-  F/ t ( ph /\ y e. ( 0 (,) 1 ) ) | 
						
							| 248 |  | nfcv |  |-  F/_ t abs | 
						
							| 249 |  | nffvmpt1 |  |-  F/_ t ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) | 
						
							| 250 | 248 249 | nffv |  |-  F/_ t ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) | 
						
							| 251 |  | nfcv |  |-  F/_ t <_ | 
						
							| 252 |  | nfcv |  |-  F/_ t ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) | 
						
							| 253 | 250 251 252 | nfbr |  |-  F/ t ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) | 
						
							| 254 | 247 253 | nfim |  |-  F/ t ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 255 |  | eleq1w |  |-  ( t = y -> ( t e. ( 0 (,) 1 ) <-> y e. ( 0 (,) 1 ) ) ) | 
						
							| 256 | 255 | anbi2d |  |-  ( t = y -> ( ( ph /\ t e. ( 0 (,) 1 ) ) <-> ( ph /\ y e. ( 0 (,) 1 ) ) ) ) | 
						
							| 257 |  | 2fveq3 |  |-  ( t = y -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) ) | 
						
							| 258 | 257 | breq1d |  |-  ( t = y -> ( ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) <-> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 259 | 256 258 | imbi12d |  |-  ( t = y -> ( ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) <-> ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) ) | 
						
							| 260 |  | simpr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 (,) 1 ) ) | 
						
							| 261 | 225 | fvmpt2 |  |-  ( ( t e. ( 0 (,) 1 ) /\ ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) e. _V ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) | 
						
							| 262 | 260 224 261 | sylancl |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) | 
						
							| 263 | 262 | fveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( abs ` ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ) | 
						
							| 264 | 164 189 192 | subdid |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( ( ( A / N ) x. 1 ) - ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) | 
						
							| 265 | 164 | mulridd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. 1 ) = ( A / N ) ) | 
						
							| 266 | 164 192 | mulcomd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) | 
						
							| 267 | 265 266 | oveq12d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. 1 ) - ( ( A / N ) x. ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) | 
						
							| 268 | 264 267 | eqtr2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) = ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) | 
						
							| 269 | 268 | fveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) = ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) | 
						
							| 270 | 161 162 163 | absdivd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / ( abs ` N ) ) ) | 
						
							| 271 | 16 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. RR ) | 
						
							| 272 | 65 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ N ) | 
						
							| 273 | 271 272 | absidd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` N ) = N ) | 
						
							| 274 | 273 | oveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) / ( abs ` N ) ) = ( ( abs ` A ) / N ) ) | 
						
							| 275 | 270 274 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( A / N ) ) = ( ( abs ` A ) / N ) ) | 
						
							| 276 | 275 | oveq1d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( A / N ) ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( ( abs ` A ) / N ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) | 
						
							| 277 | 189 192 | subcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) e. CC ) | 
						
							| 278 | 164 277 | absmuld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( abs ` ( A / N ) ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) | 
						
							| 279 | 69 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) e. RR ) | 
						
							| 280 | 279 | recnd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) e. CC ) | 
						
							| 281 | 277 | abscld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. RR ) | 
						
							| 282 | 281 | recnd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) e. CC ) | 
						
							| 283 | 280 282 162 163 | div23d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) = ( ( ( abs ` A ) / N ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ) | 
						
							| 284 | 276 278 283 | 3eqtr4d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) = ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) ) | 
						
							| 285 | 263 269 284 | 3eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) = ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) ) | 
						
							| 286 | 53 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. RR ) | 
						
							| 287 | 240 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( N - R ) ) e. RR ) | 
						
							| 288 | 241 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / N ) e. RR ) | 
						
							| 289 | 287 288 | resubcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. RR ) | 
						
							| 290 | 271 289 | remulcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) | 
						
							| 291 | 15 | absge0d |  |-  ( ph -> 0 <_ ( abs ` A ) ) | 
						
							| 292 | 291 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` A ) ) | 
						
							| 293 | 277 | absge0d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) | 
						
							| 294 | 79 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` A ) <_ R ) | 
						
							| 295 | 239 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) e. RR+ ) | 
						
							| 296 | 231 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. RR+ ) | 
						
							| 297 | 295 296 | rpdivcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) e. RR+ ) | 
						
							| 298 | 14 | dmgmn0 |  |-  ( ph -> A =/= 0 ) | 
						
							| 299 | 298 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> A =/= 0 ) | 
						
							| 300 | 161 162 299 163 | divne0d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( A / N ) =/= 0 ) | 
						
							| 301 |  | eliooord |  |-  ( t e. ( 0 (,) 1 ) -> ( 0 < t /\ t < 1 ) ) | 
						
							| 302 | 301 | adantl |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 0 < t /\ t < 1 ) ) | 
						
							| 303 | 302 | simpld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 < t ) | 
						
							| 304 | 303 | gt0ne0d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> t =/= 0 ) | 
						
							| 305 | 164 167 300 304 | mulne0d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( A / N ) x. t ) =/= 0 ) | 
						
							| 306 | 168 305 | reccld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( A / N ) x. t ) ) e. CC ) | 
						
							| 307 | 189 306 | addcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) e. CC ) | 
						
							| 308 | 168 189 168 305 | divdird |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) = ( ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) + ( 1 / ( ( A / N ) x. t ) ) ) ) | 
						
							| 309 | 168 305 | dividd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) = 1 ) | 
						
							| 310 | 309 | oveq1d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) / ( ( A / N ) x. t ) ) + ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) | 
						
							| 311 | 308 310 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) = ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) | 
						
							| 312 | 190 168 191 305 | divne0d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) =/= 0 ) | 
						
							| 313 | 311 312 | eqnetrrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) =/= 0 ) | 
						
							| 314 | 307 313 | absrpcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) e. RR+ ) | 
						
							| 315 |  | 1red |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 1 e. RR ) | 
						
							| 316 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 317 | 316 | a1i |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> 0 <_ 1 ) | 
						
							| 318 | 297 | rpred |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) e. RR ) | 
						
							| 319 | 306 | negcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 / ( ( A / N ) x. t ) ) e. CC ) | 
						
							| 320 | 319 | abscld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) e. RR ) | 
						
							| 321 | 320 315 | resubcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) e. RR ) | 
						
							| 322 | 307 | abscld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) e. RR ) | 
						
							| 323 | 233 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R e. CC ) | 
						
							| 324 | 296 | rpne0d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> R =/= 0 ) | 
						
							| 325 | 162 323 323 324 | divsubdird |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) = ( ( N / R ) - ( R / R ) ) ) | 
						
							| 326 | 323 324 | dividd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / R ) = 1 ) | 
						
							| 327 | 326 | oveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / R ) - ( R / R ) ) = ( ( N / R ) - 1 ) ) | 
						
							| 328 | 325 327 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) = ( ( N / R ) - 1 ) ) | 
						
							| 329 | 271 296 | rerpdivcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) e. RR ) | 
						
							| 330 | 323 162 324 163 | recdivd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( R / N ) ) = ( N / R ) ) | 
						
							| 331 | 166 92 | sylan2 |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) ) | 
						
							| 332 | 168 305 | absrpcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( A / N ) x. t ) ) e. RR+ ) | 
						
							| 333 | 64 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> N e. RR+ ) | 
						
							| 334 | 296 333 | rpdivcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / N ) e. RR+ ) | 
						
							| 335 | 332 334 | lerecd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( ( A / N ) x. t ) ) <_ ( R / N ) <-> ( 1 / ( R / N ) ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 336 | 331 335 | mpbid |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( R / N ) ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) | 
						
							| 337 | 330 336 | eqbrtrrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) <_ ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) | 
						
							| 338 | 306 | absnegd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) = ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) ) | 
						
							| 339 | 189 168 305 | absdivd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) = ( ( abs ` 1 ) / ( abs ` ( ( A / N ) x. t ) ) ) ) | 
						
							| 340 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 341 | 340 | oveq1i |  |-  ( ( abs ` 1 ) / ( abs ` ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) | 
						
							| 342 | 339 341 | eqtrdi |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) | 
						
							| 343 | 338 342 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) = ( 1 / ( abs ` ( ( A / N ) x. t ) ) ) ) | 
						
							| 344 | 337 343 | breqtrrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / R ) <_ ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) ) | 
						
							| 345 | 329 320 315 344 | lesub1dd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / R ) - 1 ) <_ ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) ) | 
						
							| 346 | 328 345 | eqbrtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) <_ ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) ) | 
						
							| 347 | 340 | oveq2i |  |-  ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - ( abs ` 1 ) ) = ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) | 
						
							| 348 | 319 189 | abs2difd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - ( abs ` 1 ) ) <_ ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) | 
						
							| 349 | 347 348 | eqbrtrrid |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) <_ ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) | 
						
							| 350 | 189 306 | addcomd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) ) | 
						
							| 351 | 350 | negeqd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = -u ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) ) | 
						
							| 352 | 306 189 | negdi2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( ( 1 / ( ( A / N ) x. t ) ) + 1 ) = ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) | 
						
							| 353 | 351 352 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) = ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) | 
						
							| 354 | 353 | fveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) = ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) ) | 
						
							| 355 | 307 | absnegd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` -u ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) = ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 356 | 354 355 | eqtr3d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( -u ( 1 / ( ( A / N ) x. t ) ) - 1 ) ) = ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 357 | 349 356 | breqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` -u ( 1 / ( ( A / N ) x. t ) ) ) - 1 ) <_ ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 358 | 318 321 322 346 357 | letrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / R ) <_ ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 359 | 297 314 315 317 358 | lediv2ad |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) <_ ( 1 / ( ( N - R ) / R ) ) ) | 
						
							| 360 | 17 233 | subcld |  |-  ( ph -> ( N - R ) e. CC ) | 
						
							| 361 | 360 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) e. CC ) | 
						
							| 362 | 53 236 | gtned |  |-  ( ph -> N =/= R ) | 
						
							| 363 | 17 233 362 | subne0d |  |-  ( ph -> ( N - R ) =/= 0 ) | 
						
							| 364 | 363 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - R ) =/= 0 ) | 
						
							| 365 | 361 323 364 324 | recdivd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( N - R ) / R ) ) = ( R / ( N - R ) ) ) | 
						
							| 366 | 162 323 | nncand |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N - ( N - R ) ) = R ) | 
						
							| 367 | 366 | oveq1d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - ( N - R ) ) / ( N - R ) ) = ( R / ( N - R ) ) ) | 
						
							| 368 | 162 361 361 364 | divsubdird |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - ( N - R ) ) / ( N - R ) ) = ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) ) | 
						
							| 369 | 367 368 | eqtr3d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R / ( N - R ) ) = ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) ) | 
						
							| 370 | 361 364 | dividd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N - R ) / ( N - R ) ) = 1 ) | 
						
							| 371 | 370 | oveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N / ( N - R ) ) - ( ( N - R ) / ( N - R ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) | 
						
							| 372 | 365 369 371 | 3eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( N - R ) / R ) ) = ( ( N / ( N - R ) ) - 1 ) ) | 
						
							| 373 | 359 372 | breqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) <_ ( ( N / ( N - R ) ) - 1 ) ) | 
						
							| 374 | 190 189 190 191 | divsubdird |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) | 
						
							| 375 | 168 189 | pncand |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) = ( ( A / N ) x. t ) ) | 
						
							| 376 | 375 | oveq1d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) - 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 377 | 190 191 | dividd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) = 1 ) | 
						
							| 378 | 377 | oveq1d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( ( A / N ) x. t ) + 1 ) / ( ( ( A / N ) x. t ) + 1 ) ) - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) | 
						
							| 379 | 374 376 378 | 3eqtr3rd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 380 | 190 168 191 305 | recdivd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) ) = ( ( ( A / N ) x. t ) / ( ( ( A / N ) x. t ) + 1 ) ) ) | 
						
							| 381 | 311 | oveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( ( ( ( A / N ) x. t ) + 1 ) / ( ( A / N ) x. t ) ) ) = ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 382 | 379 380 381 | 3eqtr2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 383 | 382 | fveq2d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) | 
						
							| 384 | 189 307 313 | absdivd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( ( abs ` 1 ) / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) | 
						
							| 385 | 340 | oveq1i |  |-  ( ( abs ` 1 ) / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) | 
						
							| 386 | 384 385 | eqtrdi |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 / ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) | 
						
							| 387 | 383 386 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( 1 / ( abs ` ( 1 + ( 1 / ( ( A / N ) x. t ) ) ) ) ) ) | 
						
							| 388 | 360 363 | reccld |  |-  ( ph -> ( 1 / ( N - R ) ) e. CC ) | 
						
							| 389 | 388 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / ( N - R ) ) e. CC ) | 
						
							| 390 | 241 | recnd |  |-  ( ph -> ( 1 / N ) e. CC ) | 
						
							| 391 | 390 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( 1 / N ) e. CC ) | 
						
							| 392 | 162 389 391 | subdid |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( N x. ( 1 / ( N - R ) ) ) - ( N x. ( 1 / N ) ) ) ) | 
						
							| 393 | 162 361 364 | divrecd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N / ( N - R ) ) = ( N x. ( 1 / ( N - R ) ) ) ) | 
						
							| 394 | 393 | eqcomd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( 1 / ( N - R ) ) ) = ( N / ( N - R ) ) ) | 
						
							| 395 | 162 163 | recidd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( 1 / N ) ) = 1 ) | 
						
							| 396 | 394 395 | oveq12d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( N x. ( 1 / ( N - R ) ) ) - ( N x. ( 1 / N ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) | 
						
							| 397 | 392 396 | eqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( N / ( N - R ) ) - 1 ) ) | 
						
							| 398 | 373 387 397 | 3brtr4d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) <_ ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 399 | 279 286 281 290 292 293 294 398 | lemul12ad |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( R x. ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 400 | 242 | recnd |  |-  ( ph -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) | 
						
							| 401 | 400 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 / ( N - R ) ) - ( 1 / N ) ) e. CC ) | 
						
							| 402 | 323 162 401 | mul12d |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R x. ( N x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) = ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 403 | 399 402 | breqtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) | 
						
							| 404 | 279 281 | remulcld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) e. RR ) | 
						
							| 405 | 243 | adantr |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. RR ) | 
						
							| 406 | 404 405 333 | ledivmuld |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) <-> ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) <_ ( N x. ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) ) ) | 
						
							| 407 | 403 406 | mpbird |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( ( ( abs ` A ) x. ( abs ` ( 1 - ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) / N ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 408 | 285 407 | eqbrtrd |  |-  ( ( ph /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` t ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 409 | 254 259 408 | chvarfv |  |-  ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( t e. ( 0 (,) 1 ) |-> ( ( A / N ) - ( ( 1 / ( ( ( A / N ) x. t ) + 1 ) ) x. ( A / N ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 410 | 246 409 | eqbrtrd |  |-  ( ( ph /\ y e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) ` y ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 411 | 8 9 147 227 243 410 | dvlip |  |-  ( ( ph /\ ( 1 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) <_ ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) | 
						
							| 412 | 6 7 411 | mpanr12 |  |-  ( ph -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) <_ ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) | 
						
							| 413 |  | eqidd |  |-  ( ph -> ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ) | 
						
							| 414 |  | oveq2 |  |-  ( t = 1 -> ( ( A / N ) x. t ) = ( ( A / N ) x. 1 ) ) | 
						
							| 415 | 414 178 | sylan9eqr |  |-  ( ( ph /\ t = 1 ) -> ( ( A / N ) x. t ) = ( A / N ) ) | 
						
							| 416 | 415 | fvoveq1d |  |-  ( ( ph /\ t = 1 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` ( ( A / N ) + 1 ) ) ) | 
						
							| 417 | 415 416 | oveq12d |  |-  ( ( ph /\ t = 1 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) | 
						
							| 418 | 6 | a1i |  |-  ( ph -> 1 e. ( 0 [,] 1 ) ) | 
						
							| 419 |  | ovexd |  |-  ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. _V ) | 
						
							| 420 | 413 417 418 419 | fvmptd |  |-  ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) | 
						
							| 421 |  | oveq2 |  |-  ( t = 0 -> ( ( A / N ) x. t ) = ( ( A / N ) x. 0 ) ) | 
						
							| 422 | 19 | mul01d |  |-  ( ph -> ( ( A / N ) x. 0 ) = 0 ) | 
						
							| 423 | 421 422 | sylan9eqr |  |-  ( ( ph /\ t = 0 ) -> ( ( A / N ) x. t ) = 0 ) | 
						
							| 424 | 423 | oveq1d |  |-  ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 425 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 426 | 424 425 | eqtrdi |  |-  ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) + 1 ) = 1 ) | 
						
							| 427 | 426 | fveq2d |  |-  ( ( ph /\ t = 0 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = ( log ` 1 ) ) | 
						
							| 428 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 429 | 427 428 | eqtrdi |  |-  ( ( ph /\ t = 0 ) -> ( log ` ( ( ( A / N ) x. t ) + 1 ) ) = 0 ) | 
						
							| 430 | 423 429 | oveq12d |  |-  ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = ( 0 - 0 ) ) | 
						
							| 431 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 432 | 430 431 | eqtrdi |  |-  ( ( ph /\ t = 0 ) -> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) = 0 ) | 
						
							| 433 | 7 | a1i |  |-  ( ph -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 434 | 413 432 433 433 | fvmptd |  |-  ( ph -> ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) = 0 ) | 
						
							| 435 | 420 434 | oveq12d |  |-  ( ph -> ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) = ( ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) - 0 ) ) | 
						
							| 436 | 19 138 | addcld |  |-  ( ph -> ( ( A / N ) + 1 ) e. CC ) | 
						
							| 437 | 14 3 | dmgmdivn0 |  |-  ( ph -> ( ( A / N ) + 1 ) =/= 0 ) | 
						
							| 438 | 436 437 | logcld |  |-  ( ph -> ( log ` ( ( A / N ) + 1 ) ) e. CC ) | 
						
							| 439 | 19 438 | subcld |  |-  ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) e. CC ) | 
						
							| 440 | 439 | subid1d |  |-  ( ph -> ( ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) - 0 ) = ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) | 
						
							| 441 | 435 440 | eqtr2d |  |-  ( ph -> ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) = ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) | 
						
							| 442 | 441 | fveq2d |  |-  ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) = ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( ( ( A / N ) x. t ) - ( log ` ( ( ( A / N ) x. t ) + 1 ) ) ) ) ` 0 ) ) ) ) | 
						
							| 443 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 444 | 443 | fveq2i |  |-  ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) | 
						
							| 445 | 444 340 | eqtri |  |-  ( abs ` ( 1 - 0 ) ) = 1 | 
						
							| 446 | 445 | oveq2i |  |-  ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. 1 ) | 
						
							| 447 | 233 400 | mulcld |  |-  ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) e. CC ) | 
						
							| 448 | 447 | mulridd |  |-  ( ph -> ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. 1 ) = ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) | 
						
							| 449 | 446 448 | eqtr2id |  |-  ( ph -> ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) = ( ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) | 
						
							| 450 | 412 442 449 | 3brtr4d |  |-  ( ph -> ( abs ` ( ( A / N ) - ( log ` ( ( A / N ) + 1 ) ) ) ) <_ ( R x. ( ( 1 / ( N - R ) ) - ( 1 / N ) ) ) ) |