Metamath Proof Explorer


Theorem lgamgulmlem3

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.n φN
lgamgulm.a φAU
lgamgulm.l φ2RN
Assertion lgamgulmlem3 φAlogN+1NlogAN+1R2R+1N2

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.n φN
4 lgamgulm.a φAU
5 lgamgulm.l φ2RN
6 1 2 lgamgulmlem1 φU
7 6 4 sseldd φA
8 7 eldifad φA
9 3 peano2nnd φN+1
10 9 nnrpd φN+1+
11 3 nnrpd φN+
12 10 11 rpdivcld φN+1N+
13 12 relogcld φlogN+1N
14 13 recnd φlogN+1N
15 8 14 mulcld φAlogN+1N
16 3 nncnd φN
17 3 nnne0d φN0
18 8 16 17 divcld φAN
19 1cnd φ1
20 18 19 addcld φAN+1
21 7 3 dmgmdivn0 φAN+10
22 20 21 logcld φlogAN+1
23 15 22 subcld φAlogN+1NlogAN+1
24 23 abscld φAlogN+1NlogAN+1
25 15 18 subcld φAlogN+1NAN
26 25 abscld φAlogN+1NAN
27 18 22 subcld φANlogAN+1
28 27 abscld φANlogAN+1
29 26 28 readdcld φAlogN+1NAN+ANlogAN+1
30 1 nnred φR
31 2re 2
32 31 a1i φ2
33 1red φ1
34 30 33 readdcld φR+1
35 32 34 remulcld φ2R+1
36 3 nnsqcld φN2
37 35 36 nndivred φ2R+1N2
38 30 37 remulcld φR2R+1N2
39 15 22 18 abs3difd φAlogN+1NlogAN+1AlogN+1NAN+ANlogAN+1
40 3 nnrecred φ1N
41 9 nnrecred φ1N+1
42 40 41 resubcld φ1N1N+1
43 30 42 remulcld φR1N1N+1
44 32 30 remulcld φ2R
45 3 nnred φN
46 1 nnrpd φR+
47 30 46 ltaddrpd φR<R+R
48 1 nncnd φR
49 48 2timesd φ2R=R+R
50 47 49 breqtrrd φR<2R
51 30 44 45 50 5 ltletrd φR<N
52 difrp RNR<NNR+
53 30 45 52 syl2anc φR<NNR+
54 51 53 mpbid φNR+
55 54 rprecred φ1NR
56 55 40 resubcld φ1NR1N
57 30 56 remulcld φR1NR1N
58 43 57 readdcld φR1N1N+1+R1NR1N
59 8 16 17 divrecd φAN=A1N
60 59 oveq2d φAlogN+1NAN=AlogN+1NA1N
61 40 recnd φ1N
62 8 14 61 subdid φAlogN+1N1N=AlogN+1NA1N
63 60 62 eqtr4d φAlogN+1NAN=AlogN+1N1N
64 63 fveq2d φAlogN+1NAN=AlogN+1N1N
65 14 61 subcld φlogN+1N1N
66 8 65 absmuld φAlogN+1N1N=AlogN+1N1N
67 64 66 eqtrd φAlogN+1NAN=AlogN+1N1N
68 8 abscld φA
69 65 abscld φlogN+1N1N
70 8 absge0d φ0A
71 65 absge0d φ0logN+1N1N
72 fveq2 x=Ax=A
73 72 breq1d x=AxRAR
74 fvoveq1 x=Ax+k=A+k
75 74 breq2d x=A1Rx+k1RA+k
76 75 ralbidv x=Ak01Rx+kk01RA+k
77 73 76 anbi12d x=AxRk01Rx+kARk01RA+k
78 77 2 elrab2 AUAARk01RA+k
79 78 simprbi AUARk01RA+k
80 4 79 syl φARk01RA+k
81 80 simpld φAR
82 10 11 relogdivd φlogN+1N=logN+1logN
83 logdifbnd N+logN+1logN1N
84 11 83 syl φlogN+1logN1N
85 82 84 eqbrtrd φlogN+1N1N
86 13 40 85 abssuble0d φlogN+1N1N=1NlogN+1N
87 logdiflbnd N+1N+1logN+1logN
88 11 87 syl φ1N+1logN+1logN
89 88 82 breqtrrd φ1N+1logN+1N
90 41 13 40 89 lesub2dd φ1NlogN+1N1N1N+1
91 86 90 eqbrtrd φlogN+1N1N1N1N+1
92 68 30 69 42 70 71 81 91 lemul12ad φAlogN+1N1NR1N1N+1
93 67 92 eqbrtrd φAlogN+1NANR1N1N+1
94 1 2 3 4 5 lgamgulmlem2 φANlogAN+1R1NR1N
95 26 28 43 57 93 94 le2addd φAlogN+1NAN+ANlogAN+1R1N1N+1+R1NR1N
96 16 48 subcld φNR
97 16 19 addcld φN+1
98 30 51 gtned φNR
99 16 48 98 subne0d φNR0
100 9 nnne0d φN+10
101 96 97 99 100 subrecd φ1NR1N+1=N+1-NRNRN+1
102 16 19 48 pnncand φN+1-NR=1+R
103 19 48 102 comraddd φN+1-NR=R+1
104 103 oveq1d φN+1-NRNRN+1=R+1NRN+1
105 101 104 eqtr2d φR+1NRN+1=1NR1N+1
106 105 oveq2d φRR+1NRN+1=R1NR1N+1
107 97 100 reccld φ1N+1
108 96 99 reccld φ1NR
109 61 107 108 npncan3d φ1N1N+1+1NR-1N=1NR1N+1
110 109 eqcomd φ1NR1N+1=1N1N+1+1NR-1N
111 110 oveq2d φR1NR1N+1=R1N1N+1+1NR-1N
112 42 recnd φ1N1N+1
113 56 recnd φ1NR1N
114 48 112 113 adddid φR1N1N+1+1NR-1N=R1N1N+1+R1NR1N
115 106 111 114 3eqtrd φRR+1NRN+1=R1N1N+1+R1NR1N
116 54 10 rpmulcld φNRN+1+
117 34 116 rerpdivcld φR+1NRN+1
118 46 rpge0d φ0R
119 2z 2
120 119 a1i φ2
121 11 120 rpexpcld φN2+
122 121 rphalfcld φN22+
123 0le1 01
124 123 a1i φ01
125 30 33 118 124 addge0d φ0R+1
126 16 sqvald φN2= N N
127 126 oveq1d φN22= N N2
128 32 recnd φ2
129 2ne0 20
130 129 a1i φ20
131 16 16 128 130 div23d φ N N2=N2 N
132 127 131 eqtrd φN22=N2 N
133 45 rehalfcld φN2
134 45 30 resubcld φNR
135 45 33 readdcld φN+1
136 2rp 2+
137 136 a1i φ2+
138 11 rpge0d φ0N
139 45 137 138 divge0d φ0N2
140 30 45 137 lemuldiv2d φ2RNRN2
141 5 140 mpbid φRN2
142 16 2halvesd φN2+N2=N
143 133 recnd φN2
144 16 143 143 subaddd φNN2=N2N2+N2=N
145 142 144 mpbird φNN2=N2
146 141 145 breqtrrd φRNN2
147 30 45 133 146 lesubd φN2NR
148 45 lep1d φNN+1
149 133 134 45 135 139 138 147 148 lemul12ad φN2 NNRN+1
150 132 149 eqbrtrd φN22NRN+1
151 122 116 34 125 150 lediv2ad φR+1NRN+1R+1N22
152 1 peano2nnd φR+1
153 152 nncnd φR+1
154 36 nncnd φN2
155 36 nnne0d φN20
156 153 154 128 155 130 divdiv2d φR+1N22=R+12N2
157 153 128 mulcomd φR+12=2R+1
158 157 oveq1d φR+12N2=2R+1N2
159 156 158 eqtr2d φ2R+1N2=R+1N22
160 151 159 breqtrrd φR+1NRN+12R+1N2
161 117 37 30 118 160 lemul2ad φRR+1NRN+1R2R+1N2
162 115 161 eqbrtrrd φR1N1N+1+R1NR1NR2R+1N2
163 29 58 38 95 162 letrd φAlogN+1NAN+ANlogAN+1R2R+1N2
164 24 29 38 39 163 letrd φAlogN+1NlogAN+1R2R+1N2