Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Gamma function
lgamgulmlem3
Next ⟩
lgamgulmlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgamgulmlem3
Description:
Lemma for
lgamgulm
.
(Contributed by
Mario Carneiro
, 3-Jul-2017)
Ref
Expression
Hypotheses
lgamgulm.r
⊢
φ
→
R
∈
ℕ
lgamgulm.u
⊢
U
=
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
lgamgulm.n
⊢
φ
→
N
∈
ℕ
lgamgulm.a
⊢
φ
→
A
∈
U
lgamgulm.l
⊢
φ
→
2
R
≤
N
Assertion
lgamgulmlem3
⊢
φ
→
A
log
N
+
1
N
−
log
A
N
+
1
≤
R
2
R
+
1
N
2
Proof
Step
Hyp
Ref
Expression
1
lgamgulm.r
⊢
φ
→
R
∈
ℕ
2
lgamgulm.u
⊢
U
=
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
3
lgamgulm.n
⊢
φ
→
N
∈
ℕ
4
lgamgulm.a
⊢
φ
→
A
∈
U
5
lgamgulm.l
⊢
φ
→
2
R
≤
N
6
1
2
lgamgulmlem1
⊢
φ
→
U
⊆
ℂ
∖
ℤ
∖
ℕ
7
6
4
sseldd
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
8
7
eldifad
⊢
φ
→
A
∈
ℂ
9
3
peano2nnd
⊢
φ
→
N
+
1
∈
ℕ
10
9
nnrpd
⊢
φ
→
N
+
1
∈
ℝ
+
11
3
nnrpd
⊢
φ
→
N
∈
ℝ
+
12
10
11
rpdivcld
⊢
φ
→
N
+
1
N
∈
ℝ
+
13
12
relogcld
⊢
φ
→
log
N
+
1
N
∈
ℝ
14
13
recnd
⊢
φ
→
log
N
+
1
N
∈
ℂ
15
8
14
mulcld
⊢
φ
→
A
log
N
+
1
N
∈
ℂ
16
3
nncnd
⊢
φ
→
N
∈
ℂ
17
3
nnne0d
⊢
φ
→
N
≠
0
18
8
16
17
divcld
⊢
φ
→
A
N
∈
ℂ
19
1cnd
⊢
φ
→
1
∈
ℂ
20
18
19
addcld
⊢
φ
→
A
N
+
1
∈
ℂ
21
7
3
dmgmdivn0
⊢
φ
→
A
N
+
1
≠
0
22
20
21
logcld
⊢
φ
→
log
A
N
+
1
∈
ℂ
23
15
22
subcld
⊢
φ
→
A
log
N
+
1
N
−
log
A
N
+
1
∈
ℂ
24
23
abscld
⊢
φ
→
A
log
N
+
1
N
−
log
A
N
+
1
∈
ℝ
25
15
18
subcld
⊢
φ
→
A
log
N
+
1
N
−
A
N
∈
ℂ
26
25
abscld
⊢
φ
→
A
log
N
+
1
N
−
A
N
∈
ℝ
27
18
22
subcld
⊢
φ
→
A
N
−
log
A
N
+
1
∈
ℂ
28
27
abscld
⊢
φ
→
A
N
−
log
A
N
+
1
∈
ℝ
29
26
28
readdcld
⊢
φ
→
A
log
N
+
1
N
−
A
N
+
A
N
−
log
A
N
+
1
∈
ℝ
30
1
nnred
⊢
φ
→
R
∈
ℝ
31
2re
⊢
2
∈
ℝ
32
31
a1i
⊢
φ
→
2
∈
ℝ
33
1red
⊢
φ
→
1
∈
ℝ
34
30
33
readdcld
⊢
φ
→
R
+
1
∈
ℝ
35
32
34
remulcld
⊢
φ
→
2
R
+
1
∈
ℝ
36
3
nnsqcld
⊢
φ
→
N
2
∈
ℕ
37
35
36
nndivred
⊢
φ
→
2
R
+
1
N
2
∈
ℝ
38
30
37
remulcld
⊢
φ
→
R
2
R
+
1
N
2
∈
ℝ
39
15
22
18
abs3difd
⊢
φ
→
A
log
N
+
1
N
−
log
A
N
+
1
≤
A
log
N
+
1
N
−
A
N
+
A
N
−
log
A
N
+
1
40
3
nnrecred
⊢
φ
→
1
N
∈
ℝ
41
9
nnrecred
⊢
φ
→
1
N
+
1
∈
ℝ
42
40
41
resubcld
⊢
φ
→
1
N
−
1
N
+
1
∈
ℝ
43
30
42
remulcld
⊢
φ
→
R
1
N
−
1
N
+
1
∈
ℝ
44
32
30
remulcld
⊢
φ
→
2
R
∈
ℝ
45
3
nnred
⊢
φ
→
N
∈
ℝ
46
1
nnrpd
⊢
φ
→
R
∈
ℝ
+
47
30
46
ltaddrpd
⊢
φ
→
R
<
R
+
R
48
1
nncnd
⊢
φ
→
R
∈
ℂ
49
48
2timesd
⊢
φ
→
2
R
=
R
+
R
50
47
49
breqtrrd
⊢
φ
→
R
<
2
R
51
30
44
45
50
5
ltletrd
⊢
φ
→
R
<
N
52
difrp
⊢
R
∈
ℝ
∧
N
∈
ℝ
→
R
<
N
↔
N
−
R
∈
ℝ
+
53
30
45
52
syl2anc
⊢
φ
→
R
<
N
↔
N
−
R
∈
ℝ
+
54
51
53
mpbid
⊢
φ
→
N
−
R
∈
ℝ
+
55
54
rprecred
⊢
φ
→
1
N
−
R
∈
ℝ
56
55
40
resubcld
⊢
φ
→
1
N
−
R
−
1
N
∈
ℝ
57
30
56
remulcld
⊢
φ
→
R
1
N
−
R
−
1
N
∈
ℝ
58
43
57
readdcld
⊢
φ
→
R
1
N
−
1
N
+
1
+
R
1
N
−
R
−
1
N
∈
ℝ
59
8
16
17
divrecd
⊢
φ
→
A
N
=
A
1
N
60
59
oveq2d
⊢
φ
→
A
log
N
+
1
N
−
A
N
=
A
log
N
+
1
N
−
A
1
N
61
40
recnd
⊢
φ
→
1
N
∈
ℂ
62
8
14
61
subdid
⊢
φ
→
A
log
N
+
1
N
−
1
N
=
A
log
N
+
1
N
−
A
1
N
63
60
62
eqtr4d
⊢
φ
→
A
log
N
+
1
N
−
A
N
=
A
log
N
+
1
N
−
1
N
64
63
fveq2d
⊢
φ
→
A
log
N
+
1
N
−
A
N
=
A
log
N
+
1
N
−
1
N
65
14
61
subcld
⊢
φ
→
log
N
+
1
N
−
1
N
∈
ℂ
66
8
65
absmuld
⊢
φ
→
A
log
N
+
1
N
−
1
N
=
A
log
N
+
1
N
−
1
N
67
64
66
eqtrd
⊢
φ
→
A
log
N
+
1
N
−
A
N
=
A
log
N
+
1
N
−
1
N
68
8
abscld
⊢
φ
→
A
∈
ℝ
69
65
abscld
⊢
φ
→
log
N
+
1
N
−
1
N
∈
ℝ
70
8
absge0d
⊢
φ
→
0
≤
A
71
65
absge0d
⊢
φ
→
0
≤
log
N
+
1
N
−
1
N
72
fveq2
⊢
x
=
A
→
x
=
A
73
72
breq1d
⊢
x
=
A
→
x
≤
R
↔
A
≤
R
74
fvoveq1
⊢
x
=
A
→
x
+
k
=
A
+
k
75
74
breq2d
⊢
x
=
A
→
1
R
≤
x
+
k
↔
1
R
≤
A
+
k
76
75
ralbidv
⊢
x
=
A
→
∀
k
∈
ℕ
0
1
R
≤
x
+
k
↔
∀
k
∈
ℕ
0
1
R
≤
A
+
k
77
73
76
anbi12d
⊢
x
=
A
→
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
↔
A
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
A
+
k
78
77
2
elrab2
⊢
A
∈
U
↔
A
∈
ℂ
∧
A
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
A
+
k
79
78
simprbi
⊢
A
∈
U
→
A
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
A
+
k
80
4
79
syl
⊢
φ
→
A
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
A
+
k
81
80
simpld
⊢
φ
→
A
≤
R
82
10
11
relogdivd
⊢
φ
→
log
N
+
1
N
=
log
N
+
1
−
log
N
83
logdifbnd
⊢
N
∈
ℝ
+
→
log
N
+
1
−
log
N
≤
1
N
84
11
83
syl
⊢
φ
→
log
N
+
1
−
log
N
≤
1
N
85
82
84
eqbrtrd
⊢
φ
→
log
N
+
1
N
≤
1
N
86
13
40
85
abssuble0d
⊢
φ
→
log
N
+
1
N
−
1
N
=
1
N
−
log
N
+
1
N
87
logdiflbnd
⊢
N
∈
ℝ
+
→
1
N
+
1
≤
log
N
+
1
−
log
N
88
11
87
syl
⊢
φ
→
1
N
+
1
≤
log
N
+
1
−
log
N
89
88
82
breqtrrd
⊢
φ
→
1
N
+
1
≤
log
N
+
1
N
90
41
13
40
89
lesub2dd
⊢
φ
→
1
N
−
log
N
+
1
N
≤
1
N
−
1
N
+
1
91
86
90
eqbrtrd
⊢
φ
→
log
N
+
1
N
−
1
N
≤
1
N
−
1
N
+
1
92
68
30
69
42
70
71
81
91
lemul12ad
⊢
φ
→
A
log
N
+
1
N
−
1
N
≤
R
1
N
−
1
N
+
1
93
67
92
eqbrtrd
⊢
φ
→
A
log
N
+
1
N
−
A
N
≤
R
1
N
−
1
N
+
1
94
1
2
3
4
5
lgamgulmlem2
⊢
φ
→
A
N
−
log
A
N
+
1
≤
R
1
N
−
R
−
1
N
95
26
28
43
57
93
94
le2addd
⊢
φ
→
A
log
N
+
1
N
−
A
N
+
A
N
−
log
A
N
+
1
≤
R
1
N
−
1
N
+
1
+
R
1
N
−
R
−
1
N
96
16
48
subcld
⊢
φ
→
N
−
R
∈
ℂ
97
16
19
addcld
⊢
φ
→
N
+
1
∈
ℂ
98
30
51
gtned
⊢
φ
→
N
≠
R
99
16
48
98
subne0d
⊢
φ
→
N
−
R
≠
0
100
9
nnne0d
⊢
φ
→
N
+
1
≠
0
101
96
97
99
100
subrecd
⊢
φ
→
1
N
−
R
−
1
N
+
1
=
N
+
1
-
N
−
R
N
−
R
N
+
1
102
16
19
48
pnncand
⊢
φ
→
N
+
1
-
N
−
R
=
1
+
R
103
19
48
102
comraddd
⊢
φ
→
N
+
1
-
N
−
R
=
R
+
1
104
103
oveq1d
⊢
φ
→
N
+
1
-
N
−
R
N
−
R
N
+
1
=
R
+
1
N
−
R
N
+
1
105
101
104
eqtr2d
⊢
φ
→
R
+
1
N
−
R
N
+
1
=
1
N
−
R
−
1
N
+
1
106
105
oveq2d
⊢
φ
→
R
R
+
1
N
−
R
N
+
1
=
R
1
N
−
R
−
1
N
+
1
107
97
100
reccld
⊢
φ
→
1
N
+
1
∈
ℂ
108
96
99
reccld
⊢
φ
→
1
N
−
R
∈
ℂ
109
61
107
108
npncan3d
⊢
φ
→
1
N
−
1
N
+
1
+
1
N
−
R
-
1
N
=
1
N
−
R
−
1
N
+
1
110
109
eqcomd
⊢
φ
→
1
N
−
R
−
1
N
+
1
=
1
N
−
1
N
+
1
+
1
N
−
R
-
1
N
111
110
oveq2d
⊢
φ
→
R
1
N
−
R
−
1
N
+
1
=
R
1
N
−
1
N
+
1
+
1
N
−
R
-
1
N
112
42
recnd
⊢
φ
→
1
N
−
1
N
+
1
∈
ℂ
113
56
recnd
⊢
φ
→
1
N
−
R
−
1
N
∈
ℂ
114
48
112
113
adddid
⊢
φ
→
R
1
N
−
1
N
+
1
+
1
N
−
R
-
1
N
=
R
1
N
−
1
N
+
1
+
R
1
N
−
R
−
1
N
115
106
111
114
3eqtrd
⊢
φ
→
R
R
+
1
N
−
R
N
+
1
=
R
1
N
−
1
N
+
1
+
R
1
N
−
R
−
1
N
116
54
10
rpmulcld
⊢
φ
→
N
−
R
N
+
1
∈
ℝ
+
117
34
116
rerpdivcld
⊢
φ
→
R
+
1
N
−
R
N
+
1
∈
ℝ
118
46
rpge0d
⊢
φ
→
0
≤
R
119
2z
⊢
2
∈
ℤ
120
119
a1i
⊢
φ
→
2
∈
ℤ
121
11
120
rpexpcld
⊢
φ
→
N
2
∈
ℝ
+
122
121
rphalfcld
⊢
φ
→
N
2
2
∈
ℝ
+
123
0le1
⊢
0
≤
1
124
123
a1i
⊢
φ
→
0
≤
1
125
30
33
118
124
addge0d
⊢
φ
→
0
≤
R
+
1
126
16
sqvald
⊢
φ
→
N
2
=
N
⋅
N
127
126
oveq1d
⊢
φ
→
N
2
2
=
N
⋅
N
2
128
32
recnd
⊢
φ
→
2
∈
ℂ
129
2ne0
⊢
2
≠
0
130
129
a1i
⊢
φ
→
2
≠
0
131
16
16
128
130
div23d
⊢
φ
→
N
⋅
N
2
=
N
2
⋅
N
132
127
131
eqtrd
⊢
φ
→
N
2
2
=
N
2
⋅
N
133
45
rehalfcld
⊢
φ
→
N
2
∈
ℝ
134
45
30
resubcld
⊢
φ
→
N
−
R
∈
ℝ
135
45
33
readdcld
⊢
φ
→
N
+
1
∈
ℝ
136
2rp
⊢
2
∈
ℝ
+
137
136
a1i
⊢
φ
→
2
∈
ℝ
+
138
11
rpge0d
⊢
φ
→
0
≤
N
139
45
137
138
divge0d
⊢
φ
→
0
≤
N
2
140
30
45
137
lemuldiv2d
⊢
φ
→
2
R
≤
N
↔
R
≤
N
2
141
5
140
mpbid
⊢
φ
→
R
≤
N
2
142
16
2halvesd
⊢
φ
→
N
2
+
N
2
=
N
143
133
recnd
⊢
φ
→
N
2
∈
ℂ
144
16
143
143
subaddd
⊢
φ
→
N
−
N
2
=
N
2
↔
N
2
+
N
2
=
N
145
142
144
mpbird
⊢
φ
→
N
−
N
2
=
N
2
146
141
145
breqtrrd
⊢
φ
→
R
≤
N
−
N
2
147
30
45
133
146
lesubd
⊢
φ
→
N
2
≤
N
−
R
148
45
lep1d
⊢
φ
→
N
≤
N
+
1
149
133
134
45
135
139
138
147
148
lemul12ad
⊢
φ
→
N
2
⋅
N
≤
N
−
R
N
+
1
150
132
149
eqbrtrd
⊢
φ
→
N
2
2
≤
N
−
R
N
+
1
151
122
116
34
125
150
lediv2ad
⊢
φ
→
R
+
1
N
−
R
N
+
1
≤
R
+
1
N
2
2
152
1
peano2nnd
⊢
φ
→
R
+
1
∈
ℕ
153
152
nncnd
⊢
φ
→
R
+
1
∈
ℂ
154
36
nncnd
⊢
φ
→
N
2
∈
ℂ
155
36
nnne0d
⊢
φ
→
N
2
≠
0
156
153
154
128
155
130
divdiv2d
⊢
φ
→
R
+
1
N
2
2
=
R
+
1
⋅
2
N
2
157
153
128
mulcomd
⊢
φ
→
R
+
1
⋅
2
=
2
R
+
1
158
157
oveq1d
⊢
φ
→
R
+
1
⋅
2
N
2
=
2
R
+
1
N
2
159
156
158
eqtr2d
⊢
φ
→
2
R
+
1
N
2
=
R
+
1
N
2
2
160
151
159
breqtrrd
⊢
φ
→
R
+
1
N
−
R
N
+
1
≤
2
R
+
1
N
2
161
117
37
30
118
160
lemul2ad
⊢
φ
→
R
R
+
1
N
−
R
N
+
1
≤
R
2
R
+
1
N
2
162
115
161
eqbrtrrd
⊢
φ
→
R
1
N
−
1
N
+
1
+
R
1
N
−
R
−
1
N
≤
R
2
R
+
1
N
2
163
29
58
38
95
162
letrd
⊢
φ
→
A
log
N
+
1
N
−
A
N
+
A
N
−
log
A
N
+
1
≤
R
2
R
+
1
N
2
164
24
29
38
39
163
letrd
⊢
φ
→
A
log
N
+
1
N
−
log
A
N
+
1
≤
R
2
R
+
1
N
2