Step |
Hyp |
Ref |
Expression |
1 |
|
lgamgulm.r |
|
2 |
|
lgamgulm.u |
|
3 |
|
lgamgulm.n |
|
4 |
|
lgamgulm.a |
|
5 |
|
lgamgulm.l |
|
6 |
1 2
|
lgamgulmlem1 |
|
7 |
6 4
|
sseldd |
|
8 |
7
|
eldifad |
|
9 |
3
|
peano2nnd |
|
10 |
9
|
nnrpd |
|
11 |
3
|
nnrpd |
|
12 |
10 11
|
rpdivcld |
|
13 |
12
|
relogcld |
|
14 |
13
|
recnd |
|
15 |
8 14
|
mulcld |
|
16 |
3
|
nncnd |
|
17 |
3
|
nnne0d |
|
18 |
8 16 17
|
divcld |
|
19 |
|
1cnd |
|
20 |
18 19
|
addcld |
|
21 |
7 3
|
dmgmdivn0 |
|
22 |
20 21
|
logcld |
|
23 |
15 22
|
subcld |
|
24 |
23
|
abscld |
|
25 |
15 18
|
subcld |
|
26 |
25
|
abscld |
|
27 |
18 22
|
subcld |
|
28 |
27
|
abscld |
|
29 |
26 28
|
readdcld |
|
30 |
1
|
nnred |
|
31 |
|
2re |
|
32 |
31
|
a1i |
|
33 |
|
1red |
|
34 |
30 33
|
readdcld |
|
35 |
32 34
|
remulcld |
|
36 |
3
|
nnsqcld |
|
37 |
35 36
|
nndivred |
|
38 |
30 37
|
remulcld |
|
39 |
15 22 18
|
abs3difd |
|
40 |
3
|
nnrecred |
|
41 |
9
|
nnrecred |
|
42 |
40 41
|
resubcld |
|
43 |
30 42
|
remulcld |
|
44 |
32 30
|
remulcld |
|
45 |
3
|
nnred |
|
46 |
1
|
nnrpd |
|
47 |
30 46
|
ltaddrpd |
|
48 |
1
|
nncnd |
|
49 |
48
|
2timesd |
|
50 |
47 49
|
breqtrrd |
|
51 |
30 44 45 50 5
|
ltletrd |
|
52 |
|
difrp |
|
53 |
30 45 52
|
syl2anc |
|
54 |
51 53
|
mpbid |
|
55 |
54
|
rprecred |
|
56 |
55 40
|
resubcld |
|
57 |
30 56
|
remulcld |
|
58 |
43 57
|
readdcld |
|
59 |
8 16 17
|
divrecd |
|
60 |
59
|
oveq2d |
|
61 |
40
|
recnd |
|
62 |
8 14 61
|
subdid |
|
63 |
60 62
|
eqtr4d |
|
64 |
63
|
fveq2d |
|
65 |
14 61
|
subcld |
|
66 |
8 65
|
absmuld |
|
67 |
64 66
|
eqtrd |
|
68 |
8
|
abscld |
|
69 |
65
|
abscld |
|
70 |
8
|
absge0d |
|
71 |
65
|
absge0d |
|
72 |
|
fveq2 |
|
73 |
72
|
breq1d |
|
74 |
|
fvoveq1 |
|
75 |
74
|
breq2d |
|
76 |
75
|
ralbidv |
|
77 |
73 76
|
anbi12d |
|
78 |
77 2
|
elrab2 |
|
79 |
78
|
simprbi |
|
80 |
4 79
|
syl |
|
81 |
80
|
simpld |
|
82 |
10 11
|
relogdivd |
|
83 |
|
logdifbnd |
|
84 |
11 83
|
syl |
|
85 |
82 84
|
eqbrtrd |
|
86 |
13 40 85
|
abssuble0d |
|
87 |
|
logdiflbnd |
|
88 |
11 87
|
syl |
|
89 |
88 82
|
breqtrrd |
|
90 |
41 13 40 89
|
lesub2dd |
|
91 |
86 90
|
eqbrtrd |
|
92 |
68 30 69 42 70 71 81 91
|
lemul12ad |
|
93 |
67 92
|
eqbrtrd |
|
94 |
1 2 3 4 5
|
lgamgulmlem2 |
|
95 |
26 28 43 57 93 94
|
le2addd |
|
96 |
16 48
|
subcld |
|
97 |
16 19
|
addcld |
|
98 |
30 51
|
gtned |
|
99 |
16 48 98
|
subne0d |
|
100 |
9
|
nnne0d |
|
101 |
96 97 99 100
|
subrecd |
|
102 |
16 19 48
|
pnncand |
|
103 |
19 48 102
|
comraddd |
|
104 |
103
|
oveq1d |
|
105 |
101 104
|
eqtr2d |
|
106 |
105
|
oveq2d |
|
107 |
97 100
|
reccld |
|
108 |
96 99
|
reccld |
|
109 |
61 107 108
|
npncan3d |
|
110 |
109
|
eqcomd |
|
111 |
110
|
oveq2d |
|
112 |
42
|
recnd |
|
113 |
56
|
recnd |
|
114 |
48 112 113
|
adddid |
|
115 |
106 111 114
|
3eqtrd |
|
116 |
54 10
|
rpmulcld |
|
117 |
34 116
|
rerpdivcld |
|
118 |
46
|
rpge0d |
|
119 |
|
2z |
|
120 |
119
|
a1i |
|
121 |
11 120
|
rpexpcld |
|
122 |
121
|
rphalfcld |
|
123 |
|
0le1 |
|
124 |
123
|
a1i |
|
125 |
30 33 118 124
|
addge0d |
|
126 |
16
|
sqvald |
|
127 |
126
|
oveq1d |
|
128 |
32
|
recnd |
|
129 |
|
2ne0 |
|
130 |
129
|
a1i |
|
131 |
16 16 128 130
|
div23d |
|
132 |
127 131
|
eqtrd |
|
133 |
45
|
rehalfcld |
|
134 |
45 30
|
resubcld |
|
135 |
45 33
|
readdcld |
|
136 |
|
2rp |
|
137 |
136
|
a1i |
|
138 |
11
|
rpge0d |
|
139 |
45 137 138
|
divge0d |
|
140 |
30 45 137
|
lemuldiv2d |
|
141 |
5 140
|
mpbid |
|
142 |
16
|
2halvesd |
|
143 |
133
|
recnd |
|
144 |
16 143 143
|
subaddd |
|
145 |
142 144
|
mpbird |
|
146 |
141 145
|
breqtrrd |
|
147 |
30 45 133 146
|
lesubd |
|
148 |
45
|
lep1d |
|
149 |
133 134 45 135 139 138 147 148
|
lemul12ad |
|
150 |
132 149
|
eqbrtrd |
|
151 |
122 116 34 125 150
|
lediv2ad |
|
152 |
1
|
peano2nnd |
|
153 |
152
|
nncnd |
|
154 |
36
|
nncnd |
|
155 |
36
|
nnne0d |
|
156 |
153 154 128 155 130
|
divdiv2d |
|
157 |
153 128
|
mulcomd |
|
158 |
157
|
oveq1d |
|
159 |
156 158
|
eqtr2d |
|
160 |
151 159
|
breqtrrd |
|
161 |
117 37 30 118 160
|
lemul2ad |
|
162 |
115 161
|
eqbrtrrd |
|
163 |
29 58 38 95 162
|
letrd |
|
164 |
24 29 38 39 163
|
letrd |
|