Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
2 |
|
mulsproplem9.1 |
|- ( ph -> A e. No ) |
3 |
|
mulsproplem9.2 |
|- ( ph -> B e. No ) |
4 |
|
eqid |
|- ( p e. ( _Left ` A ) , q e. ( _Left ` B ) |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. ( _Left ` A ) , q e. ( _Left ` B ) |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
5 |
4
|
rnmpo |
|- ran ( p e. ( _Left ` A ) , q e. ( _Left ` B ) |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } |
6 |
|
fvex |
|- ( _Left ` A ) e. _V |
7 |
|
fvex |
|- ( _Left ` B ) e. _V |
8 |
6 7
|
mpoex |
|- ( p e. ( _Left ` A ) , q e. ( _Left ` B ) |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V |
9 |
8
|
rnex |
|- ran ( p e. ( _Left ` A ) , q e. ( _Left ` B ) |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V |
10 |
5 9
|
eqeltrri |
|- { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V |
11 |
|
eqid |
|- ( r e. ( _Right ` A ) , s e. ( _Right ` B ) |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. ( _Right ` A ) , s e. ( _Right ` B ) |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
12 |
11
|
rnmpo |
|- ran ( r e. ( _Right ` A ) , s e. ( _Right ` B ) |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } |
13 |
|
fvex |
|- ( _Right ` A ) e. _V |
14 |
|
fvex |
|- ( _Right ` B ) e. _V |
15 |
13 14
|
mpoex |
|- ( r e. ( _Right ` A ) , s e. ( _Right ` B ) |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V |
16 |
15
|
rnex |
|- ran ( r e. ( _Right ` A ) , s e. ( _Right ` B ) |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V |
17 |
12 16
|
eqeltrri |
|- { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V |
18 |
10 17
|
unex |
|- ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V |
19 |
18
|
a1i |
|- ( ph -> ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V ) |
20 |
|
eqid |
|- ( t e. ( _Left ` A ) , u e. ( _Right ` B ) |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = ( t e. ( _Left ` A ) , u e. ( _Right ` B ) |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) |
21 |
20
|
rnmpo |
|- ran ( t e. ( _Left ` A ) , u e. ( _Right ` B ) |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } |
22 |
6 14
|
mpoex |
|- ( t e. ( _Left ` A ) , u e. ( _Right ` B ) |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V |
23 |
22
|
rnex |
|- ran ( t e. ( _Left ` A ) , u e. ( _Right ` B ) |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V |
24 |
21 23
|
eqeltrri |
|- { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } e. _V |
25 |
|
eqid |
|- ( v e. ( _Right ` A ) , w e. ( _Left ` B ) |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = ( v e. ( _Right ` A ) , w e. ( _Left ` B ) |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) |
26 |
25
|
rnmpo |
|- ran ( v e. ( _Right ` A ) , w e. ( _Left ` B ) |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } |
27 |
13 7
|
mpoex |
|- ( v e. ( _Right ` A ) , w e. ( _Left ` B ) |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V |
28 |
27
|
rnex |
|- ran ( v e. ( _Right ` A ) , w e. ( _Left ` B ) |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V |
29 |
26 28
|
eqeltrri |
|- { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } e. _V |
30 |
24 29
|
unex |
|- ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) e. _V |
31 |
30
|
a1i |
|- ( ph -> ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) e. _V ) |
32 |
1
|
adantr |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
33 |
|
leftssold |
|- ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) |
34 |
|
simprl |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> p e. ( _Left ` A ) ) |
35 |
33 34
|
sselid |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> p e. ( _Old ` ( bday ` A ) ) ) |
36 |
3
|
adantr |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> B e. No ) |
37 |
32 35 36
|
mulsproplem2 |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( p x.s B ) e. No ) |
38 |
2
|
adantr |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> A e. No ) |
39 |
|
leftssold |
|- ( _Left ` B ) C_ ( _Old ` ( bday ` B ) ) |
40 |
|
simprr |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> q e. ( _Left ` B ) ) |
41 |
39 40
|
sselid |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> q e. ( _Old ` ( bday ` B ) ) ) |
42 |
32 38 41
|
mulsproplem3 |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( A x.s q ) e. No ) |
43 |
37 42
|
addscld |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No ) |
44 |
32 35 41
|
mulsproplem4 |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( p x.s q ) e. No ) |
45 |
43 44
|
subscld |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) |
46 |
|
eleq1 |
|- ( g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( g e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) ) |
47 |
45 46
|
syl5ibrcom |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> g e. No ) ) |
48 |
47
|
rexlimdvva |
|- ( ph -> ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> g e. No ) ) |
49 |
48
|
abssdv |
|- ( ph -> { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No ) |
50 |
1
|
adantr |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
51 |
|
rightssold |
|- ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) |
52 |
|
simprl |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> r e. ( _Right ` A ) ) |
53 |
51 52
|
sselid |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> r e. ( _Old ` ( bday ` A ) ) ) |
54 |
3
|
adantr |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> B e. No ) |
55 |
50 53 54
|
mulsproplem2 |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( r x.s B ) e. No ) |
56 |
2
|
adantr |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> A e. No ) |
57 |
|
rightssold |
|- ( _Right ` B ) C_ ( _Old ` ( bday ` B ) ) |
58 |
|
simprr |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> s e. ( _Right ` B ) ) |
59 |
57 58
|
sselid |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> s e. ( _Old ` ( bday ` B ) ) ) |
60 |
50 56 59
|
mulsproplem3 |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( A x.s s ) e. No ) |
61 |
55 60
|
addscld |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No ) |
62 |
50 53 59
|
mulsproplem4 |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( r x.s s ) e. No ) |
63 |
61 62
|
subscld |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) |
64 |
|
eleq1 |
|- ( h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( h e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) ) |
65 |
63 64
|
syl5ibrcom |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> h e. No ) ) |
66 |
65
|
rexlimdvva |
|- ( ph -> ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> h e. No ) ) |
67 |
66
|
abssdv |
|- ( ph -> { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No ) |
68 |
49 67
|
unssd |
|- ( ph -> ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No ) |
69 |
1
|
adantr |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
70 |
|
simprl |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> t e. ( _Left ` A ) ) |
71 |
33 70
|
sselid |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> t e. ( _Old ` ( bday ` A ) ) ) |
72 |
3
|
adantr |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> B e. No ) |
73 |
69 71 72
|
mulsproplem2 |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( t x.s B ) e. No ) |
74 |
2
|
adantr |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> A e. No ) |
75 |
|
simprr |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> u e. ( _Right ` B ) ) |
76 |
57 75
|
sselid |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> u e. ( _Old ` ( bday ` B ) ) ) |
77 |
69 74 76
|
mulsproplem3 |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( A x.s u ) e. No ) |
78 |
73 77
|
addscld |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( ( t x.s B ) +s ( A x.s u ) ) e. No ) |
79 |
69 71 76
|
mulsproplem4 |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( t x.s u ) e. No ) |
80 |
78 79
|
subscld |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) |
81 |
|
eleq1 |
|- ( i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( i e. No <-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) ) |
82 |
80 81
|
syl5ibrcom |
|- ( ( ph /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> i e. No ) ) |
83 |
82
|
rexlimdvva |
|- ( ph -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> i e. No ) ) |
84 |
83
|
abssdv |
|- ( ph -> { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } C_ No ) |
85 |
1
|
adantr |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
86 |
|
simprl |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> v e. ( _Right ` A ) ) |
87 |
51 86
|
sselid |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> v e. ( _Old ` ( bday ` A ) ) ) |
88 |
3
|
adantr |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> B e. No ) |
89 |
85 87 88
|
mulsproplem2 |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( v x.s B ) e. No ) |
90 |
2
|
adantr |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> A e. No ) |
91 |
|
simprr |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> w e. ( _Left ` B ) ) |
92 |
39 91
|
sselid |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> w e. ( _Old ` ( bday ` B ) ) ) |
93 |
85 90 92
|
mulsproplem3 |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( A x.s w ) e. No ) |
94 |
89 93
|
addscld |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( ( v x.s B ) +s ( A x.s w ) ) e. No ) |
95 |
85 87 92
|
mulsproplem4 |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( v x.s w ) e. No ) |
96 |
94 95
|
subscld |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) |
97 |
|
eleq1 |
|- ( j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( j e. No <-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) ) |
98 |
96 97
|
syl5ibrcom |
|- ( ( ph /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> j e. No ) ) |
99 |
98
|
rexlimdvva |
|- ( ph -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> j e. No ) ) |
100 |
99
|
abssdv |
|- ( ph -> { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } C_ No ) |
101 |
84 100
|
unssd |
|- ( ph -> ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) C_ No ) |
102 |
|
elun |
|- ( x e. ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) |
103 |
|
vex |
|- x e. _V |
104 |
|
eqeq1 |
|- ( g = x -> ( g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
105 |
104
|
2rexbidv |
|- ( g = x -> ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
106 |
103 105
|
elab |
|- ( x e. { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
107 |
|
eqeq1 |
|- ( h = x -> ( h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
108 |
107
|
2rexbidv |
|- ( h = x -> ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
109 |
103 108
|
elab |
|- ( x e. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
110 |
106 109
|
orbi12i |
|- ( ( x e. { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
111 |
102 110
|
bitri |
|- ( x e. ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
112 |
|
elun |
|- ( y e. ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( y e. { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) |
113 |
|
vex |
|- y e. _V |
114 |
|
eqeq1 |
|- ( i = y -> ( i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) |
115 |
114
|
2rexbidv |
|- ( i = y -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) |
116 |
113 115
|
elab |
|- ( y e. { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) |
117 |
|
eqeq1 |
|- ( j = y -> ( j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
118 |
117
|
2rexbidv |
|- ( j = y -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
119 |
113 118
|
elab |
|- ( y e. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) |
120 |
116 119
|
orbi12i |
|- ( ( y e. { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
121 |
112 120
|
bitri |
|- ( y e. ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
122 |
111 121
|
anbi12i |
|- ( ( x e. ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) <-> ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) /\ ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) ) |
123 |
|
anddi |
|- ( ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) /\ ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) <-> ( ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) \/ ( ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) ) ) |
124 |
122 123
|
bitri |
|- ( ( x e. ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) <-> ( ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) \/ ( ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) ) ) |
125 |
1
|
adantr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
126 |
2
|
adantr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> A e. No ) |
127 |
3
|
adantr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> B e. No ) |
128 |
|
simprll |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> p e. ( _Left ` A ) ) |
129 |
|
simprlr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> q e. ( _Left ` B ) ) |
130 |
|
simprrl |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> t e. ( _Left ` A ) ) |
131 |
|
simprrr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> u e. ( _Right ` B ) ) |
132 |
125 126 127 128 129 130 131
|
mulsproplem5 |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
133 |
|
breq2 |
|- ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
134 |
132 133
|
syl5ibrcom |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
135 |
134
|
anassrs |
|- ( ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
136 |
135
|
rexlimdvva |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
137 |
|
breq1 |
|- ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( x ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
138 |
137
|
imbi2d |
|- ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> x ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
139 |
136 138
|
syl5ibrcom |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> x |
140 |
139
|
rexlimdvva |
|- ( ph -> ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> x |
141 |
140
|
impd |
|- ( ph -> ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) -> x |
142 |
1
|
adantr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
143 |
2
|
adantr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> A e. No ) |
144 |
3
|
adantr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> B e. No ) |
145 |
|
simprll |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> p e. ( _Left ` A ) ) |
146 |
|
simprlr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> q e. ( _Left ` B ) ) |
147 |
|
simprrl |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> v e. ( _Right ` A ) ) |
148 |
|
simprrr |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> w e. ( _Left ` B ) ) |
149 |
142 143 144 145 146 147 148
|
mulsproplem6 |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
150 |
|
breq2 |
|- ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
151 |
149 150
|
syl5ibrcom |
|- ( ( ph /\ ( ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
152 |
151
|
anassrs |
|- ( ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
153 |
152
|
rexlimdvva |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
154 |
137
|
imbi2d |
|- ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> x ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
155 |
153 154
|
syl5ibrcom |
|- ( ( ph /\ ( p e. ( _Left ` A ) /\ q e. ( _Left ` B ) ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> x |
156 |
155
|
rexlimdvva |
|- ( ph -> ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> x |
157 |
156
|
impd |
|- ( ph -> ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) -> x |
158 |
141 157
|
jaod |
|- ( ph -> ( ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) -> x |
159 |
1
|
adantr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
160 |
2
|
adantr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> A e. No ) |
161 |
3
|
adantr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> B e. No ) |
162 |
|
simprll |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> r e. ( _Right ` A ) ) |
163 |
|
simprlr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> s e. ( _Right ` B ) ) |
164 |
|
simprrl |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> t e. ( _Left ` A ) ) |
165 |
|
simprrr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> u e. ( _Right ` B ) ) |
166 |
159 160 161 162 163 164 165
|
mulsproplem7 |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
167 |
|
breq2 |
|- ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
168 |
166 167
|
syl5ibrcom |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
169 |
168
|
anassrs |
|- ( ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) /\ ( t e. ( _Left ` A ) /\ u e. ( _Right ` B ) ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
170 |
169
|
rexlimdvva |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
171 |
|
breq1 |
|- ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( x ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
172 |
171
|
imbi2d |
|- ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> x ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
173 |
170 172
|
syl5ibrcom |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> x |
174 |
173
|
rexlimdvva |
|- ( ph -> ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> x |
175 |
174
|
impd |
|- ( ph -> ( ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) -> x |
176 |
1
|
adantr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
177 |
2
|
adantr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> A e. No ) |
178 |
3
|
adantr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> B e. No ) |
179 |
|
simprll |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> r e. ( _Right ` A ) ) |
180 |
|
simprlr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> s e. ( _Right ` B ) ) |
181 |
|
simprrl |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> v e. ( _Right ` A ) ) |
182 |
|
simprrr |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> w e. ( _Left ` B ) ) |
183 |
176 177 178 179 180 181 182
|
mulsproplem8 |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
184 |
|
breq2 |
|- ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
185 |
183 184
|
syl5ibrcom |
|- ( ( ph /\ ( ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
186 |
185
|
anassrs |
|- ( ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) /\ ( v e. ( _Right ` A ) /\ w e. ( _Left ` B ) ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
187 |
186
|
rexlimdvva |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
188 |
171
|
imbi2d |
|- ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> x ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
189 |
187 188
|
syl5ibrcom |
|- ( ( ph /\ ( r e. ( _Right ` A ) /\ s e. ( _Right ` B ) ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> x |
190 |
189
|
rexlimdvva |
|- ( ph -> ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> x |
191 |
190
|
impd |
|- ( ph -> ( ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) -> x |
192 |
175 191
|
jaod |
|- ( ph -> ( ( ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) -> x |
193 |
158 192
|
jaod |
|- ( ph -> ( ( ( ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) \/ ( ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) \/ ( E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) /\ E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) ) -> x |
194 |
124 193
|
biimtrid |
|- ( ph -> ( ( x e. ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) -> x |
195 |
194
|
3impib |
|- ( ( ph /\ x e. ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. ( { i | E. t e. ( _Left ` A ) E. u e. ( _Right ` B ) i = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` A ) E. w e. ( _Left ` B ) j = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) -> x |
196 |
19 31 68 101 195
|
ssltd |
|- ( ph -> ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |