Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
2 |
|
mulsproplem5.1 |
|- ( ph -> A e. No ) |
3 |
|
mulsproplem5.2 |
|- ( ph -> B e. No ) |
4 |
|
mulsproplem5.3 |
|- ( ph -> P e. ( _Left ` A ) ) |
5 |
|
mulsproplem5.4 |
|- ( ph -> Q e. ( _Left ` B ) ) |
6 |
|
mulsproplem5.5 |
|- ( ph -> T e. ( _Left ` A ) ) |
7 |
|
mulsproplem5.6 |
|- ( ph -> U e. ( _Right ` B ) ) |
8 |
|
leftssno |
|- ( _Left ` A ) C_ No |
9 |
8 4
|
sselid |
|- ( ph -> P e. No ) |
10 |
8 6
|
sselid |
|- ( ph -> T e. No ) |
11 |
|
sltlin |
|- ( ( P e. No /\ T e. No ) -> ( P |
12 |
9 10 11
|
syl2anc |
|- ( ph -> ( P |
13 |
|
leftssold |
|- ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) |
14 |
13 4
|
sselid |
|- ( ph -> P e. ( _Old ` ( bday ` A ) ) ) |
15 |
1 14 3
|
mulsproplem2 |
|- ( ph -> ( P x.s B ) e. No ) |
16 |
|
leftssold |
|- ( _Left ` B ) C_ ( _Old ` ( bday ` B ) ) |
17 |
16 5
|
sselid |
|- ( ph -> Q e. ( _Old ` ( bday ` B ) ) ) |
18 |
1 2 17
|
mulsproplem3 |
|- ( ph -> ( A x.s Q ) e. No ) |
19 |
15 18
|
addscld |
|- ( ph -> ( ( P x.s B ) +s ( A x.s Q ) ) e. No ) |
20 |
1 14 17
|
mulsproplem4 |
|- ( ph -> ( P x.s Q ) e. No ) |
21 |
19 20
|
subscld |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) |
22 |
21
|
adantr |
|- ( ( ph /\ P ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) |
23 |
13 6
|
sselid |
|- ( ph -> T e. ( _Old ` ( bday ` A ) ) ) |
24 |
1 23 3
|
mulsproplem2 |
|- ( ph -> ( T x.s B ) e. No ) |
25 |
24 18
|
addscld |
|- ( ph -> ( ( T x.s B ) +s ( A x.s Q ) ) e. No ) |
26 |
1 23 17
|
mulsproplem4 |
|- ( ph -> ( T x.s Q ) e. No ) |
27 |
25 26
|
subscld |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) e. No ) |
28 |
27
|
adantr |
|- ( ( ph /\ P ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) e. No ) |
29 |
|
rightssold |
|- ( _Right ` B ) C_ ( _Old ` ( bday ` B ) ) |
30 |
29 7
|
sselid |
|- ( ph -> U e. ( _Old ` ( bday ` B ) ) ) |
31 |
1 2 30
|
mulsproplem3 |
|- ( ph -> ( A x.s U ) e. No ) |
32 |
24 31
|
addscld |
|- ( ph -> ( ( T x.s B ) +s ( A x.s U ) ) e. No ) |
33 |
1 23 30
|
mulsproplem4 |
|- ( ph -> ( T x.s U ) e. No ) |
34 |
32 33
|
subscld |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s U ) ) -s ( T x.s U ) ) e. No ) |
35 |
34
|
adantr |
|- ( ( ph /\ P ( ( ( T x.s B ) +s ( A x.s U ) ) -s ( T x.s U ) ) e. No ) |
36 |
|
ssltleft |
|- ( B e. No -> ( _Left ` B ) < |
37 |
3 36
|
syl |
|- ( ph -> ( _Left ` B ) < |
38 |
|
snidg |
|- ( B e. No -> B e. { B } ) |
39 |
3 38
|
syl |
|- ( ph -> B e. { B } ) |
40 |
37 5 39
|
ssltsepcd |
|- ( ph -> Q |
41 |
|
0sno |
|- 0s e. No |
42 |
41
|
a1i |
|- ( ph -> 0s e. No ) |
43 |
|
leftssno |
|- ( _Left ` B ) C_ No |
44 |
43 5
|
sselid |
|- ( ph -> Q e. No ) |
45 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
46 |
45 45
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
47 |
|
0elon |
|- (/) e. On |
48 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
49 |
47 48
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
50 |
46 49
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
51 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) ) |
52 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) |
53 |
51 52
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) |
54 |
|
oldbdayim |
|- ( P e. ( _Old ` ( bday ` A ) ) -> ( bday ` P ) e. ( bday ` A ) ) |
55 |
14 54
|
syl |
|- ( ph -> ( bday ` P ) e. ( bday ` A ) ) |
56 |
|
oldbdayim |
|- ( Q e. ( _Old ` ( bday ` B ) ) -> ( bday ` Q ) e. ( bday ` B ) ) |
57 |
17 56
|
syl |
|- ( ph -> ( bday ` Q ) e. ( bday ` B ) ) |
58 |
|
bdayelon |
|- ( bday ` A ) e. On |
59 |
|
bdayelon |
|- ( bday ` B ) e. On |
60 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
61 |
58 59 60
|
mp2an |
|- ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
62 |
55 57 61
|
syl2anc |
|- ( ph -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
63 |
|
oldbdayim |
|- ( T e. ( _Old ` ( bday ` A ) ) -> ( bday ` T ) e. ( bday ` A ) ) |
64 |
23 63
|
syl |
|- ( ph -> ( bday ` T ) e. ( bday ` A ) ) |
65 |
|
bdayelon |
|- ( bday ` T ) e. On |
66 |
|
naddel1 |
|- ( ( ( bday ` T ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` T ) e. ( bday ` A ) <-> ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
67 |
65 58 59 66
|
mp3an |
|- ( ( bday ` T ) e. ( bday ` A ) <-> ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
68 |
64 67
|
sylib |
|- ( ph -> ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
69 |
62 68
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
70 |
|
bdayelon |
|- ( bday ` P ) e. On |
71 |
|
naddel1 |
|- ( ( ( bday ` P ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` P ) e. ( bday ` A ) <-> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
72 |
70 58 59 71
|
mp3an |
|- ( ( bday ` P ) e. ( bday ` A ) <-> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
73 |
55 72
|
sylib |
|- ( ph -> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
74 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` T ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
75 |
58 59 74
|
mp2an |
|- ( ( ( bday ` T ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
76 |
64 57 75
|
syl2anc |
|- ( ph -> ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
77 |
73 76
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
78 |
|
bdayelon |
|- ( bday ` Q ) e. On |
79 |
|
naddcl |
|- ( ( ( bday ` P ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. On ) |
80 |
70 78 79
|
mp2an |
|- ( ( bday ` P ) +no ( bday ` Q ) ) e. On |
81 |
|
naddcl |
|- ( ( ( bday ` T ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` T ) +no ( bday ` B ) ) e. On ) |
82 |
65 59 81
|
mp2an |
|- ( ( bday ` T ) +no ( bday ` B ) ) e. On |
83 |
80 82
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. On |
84 |
|
naddcl |
|- ( ( ( bday ` P ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` P ) +no ( bday ` B ) ) e. On ) |
85 |
70 59 84
|
mp2an |
|- ( ( bday ` P ) +no ( bday ` B ) ) e. On |
86 |
|
naddcl |
|- ( ( ( bday ` T ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` T ) +no ( bday ` Q ) ) e. On ) |
87 |
65 78 86
|
mp2an |
|- ( ( bday ` T ) +no ( bday ` Q ) ) e. On |
88 |
85 87
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. On |
89 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` A ) +no ( bday ` B ) ) e. On ) |
90 |
58 59 89
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` B ) ) e. On |
91 |
|
onunel |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
92 |
83 88 90 91
|
mp3an |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
93 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` T ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
94 |
80 82 90 93
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
95 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` B ) ) e. On /\ ( ( bday ` T ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
96 |
85 87 90 95
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
97 |
94 96
|
anbi12i |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
98 |
92 97
|
bitri |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
99 |
69 77 98
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
100 |
|
elun1 |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
101 |
99 100
|
syl |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
102 |
53 101
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` T ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` T ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
103 |
1 42 42 9 10 44 3 102
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P ( ( P x.s B ) -s ( P x.s Q ) ) |
104 |
103
|
simprd |
|- ( ph -> ( ( P ( ( P x.s B ) -s ( P x.s Q ) ) |
105 |
40 104
|
mpan2d |
|- ( ph -> ( P ( ( P x.s B ) -s ( P x.s Q ) ) |
106 |
105
|
imp |
|- ( ( ph /\ P ( ( P x.s B ) -s ( P x.s Q ) ) |
107 |
15 20
|
subscld |
|- ( ph -> ( ( P x.s B ) -s ( P x.s Q ) ) e. No ) |
108 |
24 26
|
subscld |
|- ( ph -> ( ( T x.s B ) -s ( T x.s Q ) ) e. No ) |
109 |
107 108 18
|
sltadd1d |
|- ( ph -> ( ( ( P x.s B ) -s ( P x.s Q ) ) ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) |
110 |
109
|
adantr |
|- ( ( ph /\ P ( ( ( P x.s B ) -s ( P x.s Q ) ) ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) |
111 |
106 110
|
mpbid |
|- ( ( ph /\ P ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) |
112 |
15 18 20
|
addsubsd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) ) |
113 |
112
|
adantr |
|- ( ( ph /\ P ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) ) |
114 |
24 18 26
|
addsubsd |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) = ( ( ( T x.s B ) -s ( T x.s Q ) ) +s ( A x.s Q ) ) ) |
115 |
114
|
adantr |
|- ( ( ph /\ P ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) = ( ( ( T x.s B ) -s ( T x.s Q ) ) +s ( A x.s Q ) ) ) |
116 |
111 113 115
|
3brtr4d |
|- ( ( ph /\ P ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
117 |
|
ssltleft |
|- ( A e. No -> ( _Left ` A ) < |
118 |
2 117
|
syl |
|- ( ph -> ( _Left ` A ) < |
119 |
|
snidg |
|- ( A e. No -> A e. { A } ) |
120 |
2 119
|
syl |
|- ( ph -> A e. { A } ) |
121 |
118 6 120
|
ssltsepcd |
|- ( ph -> T |
122 |
|
lltropt |
|- ( _Left ` B ) < |
123 |
122
|
a1i |
|- ( ph -> ( _Left ` B ) < |
124 |
123 5 7
|
ssltsepcd |
|- ( ph -> Q |
125 |
|
rightssno |
|- ( _Right ` B ) C_ No |
126 |
125 7
|
sselid |
|- ( ph -> U e. No ) |
127 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) |
128 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) |
129 |
127 128
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) |
130 |
|
oldbdayim |
|- ( U e. ( _Old ` ( bday ` B ) ) -> ( bday ` U ) e. ( bday ` B ) ) |
131 |
30 130
|
syl |
|- ( ph -> ( bday ` U ) e. ( bday ` B ) ) |
132 |
|
bdayelon |
|- ( bday ` U ) e. On |
133 |
|
naddel2 |
|- ( ( ( bday ` U ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` U ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
134 |
132 59 58 133
|
mp3an |
|- ( ( bday ` U ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
135 |
131 134
|
sylib |
|- ( ph -> ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
136 |
76 135
|
jca |
|- ( ph -> ( ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
137 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` T ) e. ( bday ` A ) /\ ( bday ` U ) e. ( bday ` B ) ) -> ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
138 |
58 59 137
|
mp2an |
|- ( ( ( bday ` T ) e. ( bday ` A ) /\ ( bday ` U ) e. ( bday ` B ) ) -> ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
139 |
64 131 138
|
syl2anc |
|- ( ph -> ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
140 |
|
naddel2 |
|- ( ( ( bday ` Q ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` Q ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
141 |
78 59 58 140
|
mp3an |
|- ( ( bday ` Q ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
142 |
57 141
|
sylib |
|- ( ph -> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
143 |
139 142
|
jca |
|- ( ph -> ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
144 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` U ) e. On ) -> ( ( bday ` A ) +no ( bday ` U ) ) e. On ) |
145 |
58 132 144
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` U ) ) e. On |
146 |
87 145
|
onun2i |
|- ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. On |
147 |
|
naddcl |
|- ( ( ( bday ` T ) e. On /\ ( bday ` U ) e. On ) -> ( ( bday ` T ) +no ( bday ` U ) ) e. On ) |
148 |
65 132 147
|
mp2an |
|- ( ( bday ` T ) +no ( bday ` U ) ) e. On |
149 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` A ) +no ( bday ` Q ) ) e. On ) |
150 |
58 78 149
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` Q ) ) e. On |
151 |
148 150
|
onun2i |
|- ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On |
152 |
|
onunel |
|- ( ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. On /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
153 |
146 151 90 152
|
mp3an |
|- ( ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
154 |
|
onunel |
|- ( ( ( ( bday ` T ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` U ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
155 |
87 145 90 154
|
mp3an |
|- ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
156 |
|
onunel |
|- ( ( ( ( bday ` T ) +no ( bday ` U ) ) e. On /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
157 |
148 150 90 156
|
mp3an |
|- ( ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
158 |
155 157
|
anbi12i |
|- ( ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
159 |
153 158
|
bitri |
|- ( ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
160 |
136 143 159
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
161 |
|
elun1 |
|- ( ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
162 |
160 161
|
syl |
|- ( ph -> ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
163 |
129 162
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` T ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
164 |
1 42 42 10 2 44 126 163
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( T ( ( T x.s U ) -s ( T x.s Q ) ) |
165 |
164
|
simprd |
|- ( ph -> ( ( T ( ( T x.s U ) -s ( T x.s Q ) ) |
166 |
121 124 165
|
mp2and |
|- ( ph -> ( ( T x.s U ) -s ( T x.s Q ) ) |
167 |
33 31 26 18
|
sltsubsub3bd |
|- ( ph -> ( ( ( T x.s U ) -s ( T x.s Q ) ) ( ( A x.s Q ) -s ( T x.s Q ) ) |
168 |
18 26
|
subscld |
|- ( ph -> ( ( A x.s Q ) -s ( T x.s Q ) ) e. No ) |
169 |
31 33
|
subscld |
|- ( ph -> ( ( A x.s U ) -s ( T x.s U ) ) e. No ) |
170 |
168 169 24
|
sltadd2d |
|- ( ph -> ( ( ( A x.s Q ) -s ( T x.s Q ) ) ( ( T x.s B ) +s ( ( A x.s Q ) -s ( T x.s Q ) ) ) |
171 |
167 170
|
bitrd |
|- ( ph -> ( ( ( T x.s U ) -s ( T x.s Q ) ) ( ( T x.s B ) +s ( ( A x.s Q ) -s ( T x.s Q ) ) ) |
172 |
166 171
|
mpbid |
|- ( ph -> ( ( T x.s B ) +s ( ( A x.s Q ) -s ( T x.s Q ) ) ) |
173 |
24 18 26
|
addsubsassd |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) = ( ( T x.s B ) +s ( ( A x.s Q ) -s ( T x.s Q ) ) ) ) |
174 |
24 31 33
|
addsubsassd |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s U ) ) -s ( T x.s U ) ) = ( ( T x.s B ) +s ( ( A x.s U ) -s ( T x.s U ) ) ) ) |
175 |
172 173 174
|
3brtr4d |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) |
176 |
175
|
adantr |
|- ( ( ph /\ P ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) |
177 |
22 28 35 116 176
|
slttrd |
|- ( ( ph /\ P ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
178 |
177
|
ex |
|- ( ph -> ( P ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
179 |
|
oveq1 |
|- ( P = T -> ( P x.s B ) = ( T x.s B ) ) |
180 |
179
|
oveq1d |
|- ( P = T -> ( ( P x.s B ) +s ( A x.s Q ) ) = ( ( T x.s B ) +s ( A x.s Q ) ) ) |
181 |
|
oveq1 |
|- ( P = T -> ( P x.s Q ) = ( T x.s Q ) ) |
182 |
180 181
|
oveq12d |
|- ( P = T -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) ) |
183 |
182
|
breq1d |
|- ( P = T -> ( ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) ( ( ( T x.s B ) +s ( A x.s Q ) ) -s ( T x.s Q ) ) |
184 |
175 183
|
syl5ibrcom |
|- ( ph -> ( P = T -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
185 |
21
|
adantr |
|- ( ( ph /\ T ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) |
186 |
15 31
|
addscld |
|- ( ph -> ( ( P x.s B ) +s ( A x.s U ) ) e. No ) |
187 |
1 14 30
|
mulsproplem4 |
|- ( ph -> ( P x.s U ) e. No ) |
188 |
186 187
|
subscld |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s U ) ) -s ( P x.s U ) ) e. No ) |
189 |
188
|
adantr |
|- ( ( ph /\ T ( ( ( P x.s B ) +s ( A x.s U ) ) -s ( P x.s U ) ) e. No ) |
190 |
34
|
adantr |
|- ( ( ph /\ T ( ( ( T x.s B ) +s ( A x.s U ) ) -s ( T x.s U ) ) e. No ) |
191 |
118 4 120
|
ssltsepcd |
|- ( ph -> P |
192 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) |
193 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) |
194 |
192 193
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) |
195 |
62 135
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
196 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` U ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
197 |
58 59 196
|
mp2an |
|- ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` U ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
198 |
55 131 197
|
syl2anc |
|- ( ph -> ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
199 |
198 142
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
200 |
80 145
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. On |
201 |
|
naddcl |
|- ( ( ( bday ` P ) e. On /\ ( bday ` U ) e. On ) -> ( ( bday ` P ) +no ( bday ` U ) ) e. On ) |
202 |
70 132 201
|
mp2an |
|- ( ( bday ` P ) +no ( bday ` U ) ) e. On |
203 |
202 150
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On |
204 |
|
onunel |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
205 |
200 203 90 204
|
mp3an |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
206 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` U ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
207 |
80 145 90 206
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
208 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` U ) ) e. On /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
209 |
202 150 90 208
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
210 |
207 209
|
anbi12i |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
211 |
205 210
|
bitri |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
212 |
195 199 211
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
213 |
|
elun1 |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
214 |
212 213
|
syl |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
215 |
194 214
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` U ) ) ) u. ( ( ( bday ` P ) +no ( bday ` U ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
216 |
1 42 42 9 2 44 126 215
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P ( ( P x.s U ) -s ( P x.s Q ) ) |
217 |
216
|
simprd |
|- ( ph -> ( ( P ( ( P x.s U ) -s ( P x.s Q ) ) |
218 |
191 124 217
|
mp2and |
|- ( ph -> ( ( P x.s U ) -s ( P x.s Q ) ) |
219 |
187 31 20 18
|
sltsubsub3bd |
|- ( ph -> ( ( ( P x.s U ) -s ( P x.s Q ) ) ( ( A x.s Q ) -s ( P x.s Q ) ) |
220 |
18 20
|
subscld |
|- ( ph -> ( ( A x.s Q ) -s ( P x.s Q ) ) e. No ) |
221 |
31 187
|
subscld |
|- ( ph -> ( ( A x.s U ) -s ( P x.s U ) ) e. No ) |
222 |
220 221 15
|
sltadd2d |
|- ( ph -> ( ( ( A x.s Q ) -s ( P x.s Q ) ) ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
223 |
219 222
|
bitrd |
|- ( ph -> ( ( ( P x.s U ) -s ( P x.s Q ) ) ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
224 |
218 223
|
mpbid |
|- ( ph -> ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
225 |
15 18 20
|
addsubsassd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) ) |
226 |
15 31 187
|
addsubsassd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s U ) ) -s ( P x.s U ) ) = ( ( P x.s B ) +s ( ( A x.s U ) -s ( P x.s U ) ) ) ) |
227 |
224 225 226
|
3brtr4d |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
228 |
227
|
adantr |
|- ( ( ph /\ T ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
229 |
|
ssltright |
|- ( B e. No -> { B } < |
230 |
3 229
|
syl |
|- ( ph -> { B } < |
231 |
230 39 7
|
ssltsepcd |
|- ( ph -> B |
232 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) ) |
233 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) ) = ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) |
234 |
232 233
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) ) = ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) |
235 |
|
onunel |
|- ( ( ( ( bday ` T ) +no ( bday ` B ) ) e. On /\ ( ( bday ` P ) +no ( bday ` U ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
236 |
82 202 90 235
|
mp3an |
|- ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
237 |
68 198 236
|
sylanbrc |
|- ( ph -> ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
238 |
139 73
|
jca |
|- ( ph -> ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
239 |
82 202
|
onun2i |
|- ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. On |
240 |
148 85
|
onun2i |
|- ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. On |
241 |
|
onunel |
|- ( ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. On /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
242 |
239 240 90 241
|
mp3an |
|- ( ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
243 |
|
onunel |
|- ( ( ( ( bday ` T ) +no ( bday ` U ) ) e. On /\ ( ( bday ` P ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
244 |
148 85 90 243
|
mp3an |
|- ( ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
245 |
244
|
anbi2i |
|- ( ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
246 |
242 245
|
bitri |
|- ( ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` T ) +no ( bday ` U ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
247 |
237 238 246
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
248 |
|
elun1 |
|- ( ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
249 |
247 248
|
syl |
|- ( ph -> ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
250 |
234 249
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` T ) +no ( bday ` B ) ) u. ( ( bday ` P ) +no ( bday ` U ) ) ) u. ( ( ( bday ` T ) +no ( bday ` U ) ) u. ( ( bday ` P ) +no ( bday ` B ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
251 |
1 42 42 10 9 3 126 250
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( T ( ( T x.s U ) -s ( T x.s B ) ) |
252 |
251
|
simprd |
|- ( ph -> ( ( T ( ( T x.s U ) -s ( T x.s B ) ) |
253 |
231 252
|
mpan2d |
|- ( ph -> ( T ( ( T x.s U ) -s ( T x.s B ) ) |
254 |
253
|
imp |
|- ( ( ph /\ T ( ( T x.s U ) -s ( T x.s B ) ) |
255 |
33 24 187 15
|
sltsubsub2bd |
|- ( ph -> ( ( ( T x.s U ) -s ( T x.s B ) ) ( ( P x.s B ) -s ( P x.s U ) ) |
256 |
15 187
|
subscld |
|- ( ph -> ( ( P x.s B ) -s ( P x.s U ) ) e. No ) |
257 |
24 33
|
subscld |
|- ( ph -> ( ( T x.s B ) -s ( T x.s U ) ) e. No ) |
258 |
256 257 31
|
sltadd1d |
|- ( ph -> ( ( ( P x.s B ) -s ( P x.s U ) ) ( ( ( P x.s B ) -s ( P x.s U ) ) +s ( A x.s U ) ) |
259 |
255 258
|
bitrd |
|- ( ph -> ( ( ( T x.s U ) -s ( T x.s B ) ) ( ( ( P x.s B ) -s ( P x.s U ) ) +s ( A x.s U ) ) |
260 |
259
|
adantr |
|- ( ( ph /\ T ( ( ( T x.s U ) -s ( T x.s B ) ) ( ( ( P x.s B ) -s ( P x.s U ) ) +s ( A x.s U ) ) |
261 |
254 260
|
mpbid |
|- ( ( ph /\ T ( ( ( P x.s B ) -s ( P x.s U ) ) +s ( A x.s U ) ) |
262 |
15 31 187
|
addsubsd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s U ) ) -s ( P x.s U ) ) = ( ( ( P x.s B ) -s ( P x.s U ) ) +s ( A x.s U ) ) ) |
263 |
262
|
adantr |
|- ( ( ph /\ T ( ( ( P x.s B ) +s ( A x.s U ) ) -s ( P x.s U ) ) = ( ( ( P x.s B ) -s ( P x.s U ) ) +s ( A x.s U ) ) ) |
264 |
24 31 33
|
addsubsd |
|- ( ph -> ( ( ( T x.s B ) +s ( A x.s U ) ) -s ( T x.s U ) ) = ( ( ( T x.s B ) -s ( T x.s U ) ) +s ( A x.s U ) ) ) |
265 |
264
|
adantr |
|- ( ( ph /\ T ( ( ( T x.s B ) +s ( A x.s U ) ) -s ( T x.s U ) ) = ( ( ( T x.s B ) -s ( T x.s U ) ) +s ( A x.s U ) ) ) |
266 |
261 263 265
|
3brtr4d |
|- ( ( ph /\ T ( ( ( P x.s B ) +s ( A x.s U ) ) -s ( P x.s U ) ) |
267 |
185 189 190 228 266
|
slttrd |
|- ( ( ph /\ T ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
268 |
267
|
ex |
|- ( ph -> ( T ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
269 |
178 184 268
|
3jaod |
|- ( ph -> ( ( P ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
270 |
12 269
|
mpd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |