| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsproplem.1 |  |-  ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  | 
						
							| 2 |  | mulsproplem6.1 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | mulsproplem6.2 |  |-  ( ph -> B e. No ) | 
						
							| 4 |  | mulsproplem6.3 |  |-  ( ph -> P e. ( _Left ` A ) ) | 
						
							| 5 |  | mulsproplem6.4 |  |-  ( ph -> Q e. ( _Left ` B ) ) | 
						
							| 6 |  | mulsproplem6.5 |  |-  ( ph -> V e. ( _Right ` A ) ) | 
						
							| 7 |  | mulsproplem6.6 |  |-  ( ph -> W e. ( _Left ` B ) ) | 
						
							| 8 |  | leftssno |  |-  ( _Left ` B ) C_ No | 
						
							| 9 | 8 5 | sselid |  |-  ( ph -> Q e. No ) | 
						
							| 10 | 8 7 | sselid |  |-  ( ph -> W e. No ) | 
						
							| 11 |  | sltlin |  |-  ( ( Q e. No /\ W e. No ) -> ( Q  | 
						
							| 12 | 9 10 11 | syl2anc |  |-  ( ph -> ( Q  | 
						
							| 13 |  | leftssold |  |-  ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) | 
						
							| 14 | 13 4 | sselid |  |-  ( ph -> P e. ( _Old ` ( bday ` A ) ) ) | 
						
							| 15 | 1 14 3 | mulsproplem2 |  |-  ( ph -> ( P x.s B ) e. No ) | 
						
							| 16 |  | leftssold |  |-  ( _Left ` B ) C_ ( _Old ` ( bday ` B ) ) | 
						
							| 17 | 16 5 | sselid |  |-  ( ph -> Q e. ( _Old ` ( bday ` B ) ) ) | 
						
							| 18 | 1 2 17 | mulsproplem3 |  |-  ( ph -> ( A x.s Q ) e. No ) | 
						
							| 19 | 15 18 | addscld |  |-  ( ph -> ( ( P x.s B ) +s ( A x.s Q ) ) e. No ) | 
						
							| 20 | 1 14 17 | mulsproplem4 |  |-  ( ph -> ( P x.s Q ) e. No ) | 
						
							| 21 | 19 20 | subscld |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) | 
						
							| 23 | 16 7 | sselid |  |-  ( ph -> W e. ( _Old ` ( bday ` B ) ) ) | 
						
							| 24 | 1 2 23 | mulsproplem3 |  |-  ( ph -> ( A x.s W ) e. No ) | 
						
							| 25 | 15 24 | addscld |  |-  ( ph -> ( ( P x.s B ) +s ( A x.s W ) ) e. No ) | 
						
							| 26 | 1 14 23 | mulsproplem4 |  |-  ( ph -> ( P x.s W ) e. No ) | 
						
							| 27 | 25 26 | subscld |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) e. No ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) e. No ) | 
						
							| 29 |  | rightssold |  |-  ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) | 
						
							| 30 | 29 6 | sselid |  |-  ( ph -> V e. ( _Old ` ( bday ` A ) ) ) | 
						
							| 31 | 1 30 3 | mulsproplem2 |  |-  ( ph -> ( V x.s B ) e. No ) | 
						
							| 32 | 31 24 | addscld |  |-  ( ph -> ( ( V x.s B ) +s ( A x.s W ) ) e. No ) | 
						
							| 33 | 1 30 23 | mulsproplem4 |  |-  ( ph -> ( V x.s W ) e. No ) | 
						
							| 34 | 32 33 | subscld |  |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ Q  ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) | 
						
							| 36 |  | ssltleft |  |-  ( A e. No -> ( _Left ` A ) < | 
						
							| 37 | 2 36 | syl |  |-  ( ph -> ( _Left ` A ) < | 
						
							| 38 |  | snidg |  |-  ( A e. No -> A e. { A } ) | 
						
							| 39 | 2 38 | syl |  |-  ( ph -> A e. { A } ) | 
						
							| 40 | 37 4 39 | ssltsepcd |  |-  ( ph -> P  | 
						
							| 41 |  | 0sno |  |-  0s e. No | 
						
							| 42 | 41 | a1i |  |-  ( ph -> 0s e. No ) | 
						
							| 43 |  | leftssno |  |-  ( _Left ` A ) C_ No | 
						
							| 44 | 43 4 | sselid |  |-  ( ph -> P e. No ) | 
						
							| 45 |  | bday0s |  |-  ( bday ` 0s ) = (/) | 
						
							| 46 | 45 45 | oveq12i |  |-  ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) | 
						
							| 47 |  | 0elon |  |-  (/) e. On | 
						
							| 48 |  | naddrid |  |-  ( (/) e. On -> ( (/) +no (/) ) = (/) ) | 
						
							| 49 | 47 48 | ax-mp |  |-  ( (/) +no (/) ) = (/) | 
						
							| 50 | 46 49 | eqtri |  |-  ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) | 
						
							| 51 | 50 | uneq1i |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) | 
						
							| 52 |  | 0un |  |-  ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) | 
						
							| 53 | 51 52 | eqtri |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) | 
						
							| 54 |  | oldbdayim |  |-  ( P e. ( _Old ` ( bday ` A ) ) -> ( bday ` P ) e. ( bday ` A ) ) | 
						
							| 55 | 14 54 | syl |  |-  ( ph -> ( bday ` P ) e. ( bday ` A ) ) | 
						
							| 56 |  | oldbdayim |  |-  ( Q e. ( _Old ` ( bday ` B ) ) -> ( bday ` Q ) e. ( bday ` B ) ) | 
						
							| 57 | 17 56 | syl |  |-  ( ph -> ( bday ` Q ) e. ( bday ` B ) ) | 
						
							| 58 |  | bdayelon |  |-  ( bday ` A ) e. On | 
						
							| 59 |  | bdayelon |  |-  ( bday ` B ) e. On | 
						
							| 60 |  | naddel12 |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 61 | 58 59 60 | mp2an |  |-  ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 62 | 55 57 61 | syl2anc |  |-  ( ph -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 63 |  | oldbdayim |  |-  ( W e. ( _Old ` ( bday ` B ) ) -> ( bday ` W ) e. ( bday ` B ) ) | 
						
							| 64 | 23 63 | syl |  |-  ( ph -> ( bday ` W ) e. ( bday ` B ) ) | 
						
							| 65 |  | bdayelon |  |-  ( bday ` W ) e. On | 
						
							| 66 |  | naddel2 |  |-  ( ( ( bday ` W ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 67 | 65 59 58 66 | mp3an |  |-  ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 68 | 64 67 | sylib |  |-  ( ph -> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 69 | 62 68 | jca |  |-  ( ph -> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 70 |  | naddel12 |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 71 | 58 59 70 | mp2an |  |-  ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 72 | 55 64 71 | syl2anc |  |-  ( ph -> ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 73 |  | bdayelon |  |-  ( bday ` Q ) e. On | 
						
							| 74 |  | naddel2 |  |-  ( ( ( bday ` Q ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` Q ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 75 | 73 59 58 74 | mp3an |  |-  ( ( bday ` Q ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 76 | 57 75 | sylib |  |-  ( ph -> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 77 | 72 76 | jca |  |-  ( ph -> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 78 |  | bdayelon |  |-  ( bday ` P ) e. On | 
						
							| 79 |  | naddcl |  |-  ( ( ( bday ` P ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. On ) | 
						
							| 80 | 78 73 79 | mp2an |  |-  ( ( bday ` P ) +no ( bday ` Q ) ) e. On | 
						
							| 81 |  | naddcl |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` A ) +no ( bday ` W ) ) e. On ) | 
						
							| 82 | 58 65 81 | mp2an |  |-  ( ( bday ` A ) +no ( bday ` W ) ) e. On | 
						
							| 83 | 80 82 | onun2i |  |-  ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. On | 
						
							| 84 |  | naddcl |  |-  ( ( ( bday ` P ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` P ) +no ( bday ` W ) ) e. On ) | 
						
							| 85 | 78 65 84 | mp2an |  |-  ( ( bday ` P ) +no ( bday ` W ) ) e. On | 
						
							| 86 |  | naddcl |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` A ) +no ( bday ` Q ) ) e. On ) | 
						
							| 87 | 58 73 86 | mp2an |  |-  ( ( bday ` A ) +no ( bday ` Q ) ) e. On | 
						
							| 88 | 85 87 | onun2i |  |-  ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On | 
						
							| 89 |  | naddcl |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` A ) +no ( bday ` B ) ) e. On ) | 
						
							| 90 | 58 59 89 | mp2an |  |-  ( ( bday ` A ) +no ( bday ` B ) ) e. On | 
						
							| 91 |  | onunel |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 92 | 83 88 90 91 | mp3an |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 93 |  | onunel |  |-  ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 94 | 80 82 90 93 | mp3an |  |-  ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 95 |  | onunel |  |-  ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 96 | 85 87 90 95 | mp3an |  |-  ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 97 | 94 96 | anbi12i |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 98 | 92 97 | bitri |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 99 | 69 77 98 | sylanbrc |  |-  ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 100 |  | elun1 |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 102 | 53 101 | eqeltrid |  |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 103 | 1 42 42 44 2 9 10 102 | mulsproplem1 |  |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P  ( ( P x.s W ) -s ( P x.s Q ) )  | 
						
							| 104 | 103 | simprd |  |-  ( ph -> ( ( P  ( ( P x.s W ) -s ( P x.s Q ) )  | 
						
							| 105 | 40 104 | mpand |  |-  ( ph -> ( Q  ( ( P x.s W ) -s ( P x.s Q ) )  | 
						
							| 106 | 105 | imp |  |-  ( ( ph /\ Q  ( ( P x.s W ) -s ( P x.s Q ) )  | 
						
							| 107 | 26 24 20 18 | sltsubsub3bd |  |-  ( ph -> ( ( ( P x.s W ) -s ( P x.s Q ) )  ( ( A x.s Q ) -s ( P x.s Q ) )  | 
						
							| 108 | 18 20 | subscld |  |-  ( ph -> ( ( A x.s Q ) -s ( P x.s Q ) ) e. No ) | 
						
							| 109 | 24 26 | subscld |  |-  ( ph -> ( ( A x.s W ) -s ( P x.s W ) ) e. No ) | 
						
							| 110 | 108 109 15 | sltadd2d |  |-  ( ph -> ( ( ( A x.s Q ) -s ( P x.s Q ) )  ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) )  | 
						
							| 111 | 107 110 | bitrd |  |-  ( ph -> ( ( ( P x.s W ) -s ( P x.s Q ) )  ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) )  | 
						
							| 112 | 111 | adantr |  |-  ( ( ph /\ Q  ( ( ( P x.s W ) -s ( P x.s Q ) )  ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) )  | 
						
							| 113 | 106 112 | mpbid |  |-  ( ( ph /\ Q  ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) )  | 
						
							| 114 | 15 18 20 | addsubsassd |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) ) | 
						
							| 116 | 15 24 26 | addsubsassd |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) = ( ( P x.s B ) +s ( ( A x.s W ) -s ( P x.s W ) ) ) ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) = ( ( P x.s B ) +s ( ( A x.s W ) -s ( P x.s W ) ) ) ) | 
						
							| 118 | 113 115 117 | 3brtr4d |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 119 |  | lltropt |  |-  ( _Left ` A ) < | 
						
							| 120 | 119 | a1i |  |-  ( ph -> ( _Left ` A ) < | 
						
							| 121 | 120 4 6 | ssltsepcd |  |-  ( ph -> P  | 
						
							| 122 |  | ssltleft |  |-  ( B e. No -> ( _Left ` B ) < | 
						
							| 123 | 3 122 | syl |  |-  ( ph -> ( _Left ` B ) < | 
						
							| 124 |  | snidg |  |-  ( B e. No -> B e. { B } ) | 
						
							| 125 | 3 124 | syl |  |-  ( ph -> B e. { B } ) | 
						
							| 126 | 123 7 125 | ssltsepcd |  |-  ( ph -> W  | 
						
							| 127 |  | rightssno |  |-  ( _Right ` A ) C_ No | 
						
							| 128 | 127 6 | sselid |  |-  ( ph -> V e. No ) | 
						
							| 129 | 50 | uneq1i |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) | 
						
							| 130 |  | 0un |  |-  ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) | 
						
							| 131 | 129 130 | eqtri |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) | 
						
							| 132 |  | oldbdayim |  |-  ( V e. ( _Old ` ( bday ` A ) ) -> ( bday ` V ) e. ( bday ` A ) ) | 
						
							| 133 | 30 132 | syl |  |-  ( ph -> ( bday ` V ) e. ( bday ` A ) ) | 
						
							| 134 |  | bdayelon |  |-  ( bday ` V ) e. On | 
						
							| 135 |  | naddel1 |  |-  ( ( ( bday ` V ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 136 | 134 58 59 135 | mp3an |  |-  ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 137 | 133 136 | sylib |  |-  ( ph -> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 138 | 72 137 | jca |  |-  ( ph -> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 139 |  | naddel1 |  |-  ( ( ( bday ` P ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` P ) e. ( bday ` A ) <-> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 140 | 78 58 59 139 | mp3an |  |-  ( ( bday ` P ) e. ( bday ` A ) <-> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 141 | 55 140 | sylib |  |-  ( ph -> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 142 |  | naddel12 |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 143 | 58 59 142 | mp2an |  |-  ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 144 | 133 64 143 | syl2anc |  |-  ( ph -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 145 | 141 144 | jca |  |-  ( ph -> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 146 |  | naddcl |  |-  ( ( ( bday ` V ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) +no ( bday ` B ) ) e. On ) | 
						
							| 147 | 134 59 146 | mp2an |  |-  ( ( bday ` V ) +no ( bday ` B ) ) e. On | 
						
							| 148 | 85 147 | onun2i |  |-  ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On | 
						
							| 149 |  | naddcl |  |-  ( ( ( bday ` P ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` P ) +no ( bday ` B ) ) e. On ) | 
						
							| 150 | 78 59 149 | mp2an |  |-  ( ( bday ` P ) +no ( bday ` B ) ) e. On | 
						
							| 151 |  | naddcl |  |-  ( ( ( bday ` V ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. On ) | 
						
							| 152 | 134 65 151 | mp2an |  |-  ( ( bday ` V ) +no ( bday ` W ) ) e. On | 
						
							| 153 | 150 152 | onun2i |  |-  ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On | 
						
							| 154 |  | onunel |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 155 | 148 153 90 154 | mp3an |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 156 |  | onunel |  |-  ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 157 | 85 147 90 156 | mp3an |  |-  ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 158 |  | onunel |  |-  ( ( ( ( bday ` P ) +no ( bday ` B ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 159 | 150 152 90 158 | mp3an |  |-  ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 160 | 157 159 | anbi12i |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 161 | 155 160 | bitri |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 162 | 138 145 161 | sylanbrc |  |-  ( ph -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 163 |  | elun1 |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 164 | 162 163 | syl |  |-  ( ph -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 165 | 131 164 | eqeltrid |  |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 166 | 1 42 42 44 128 10 3 165 | mulsproplem1 |  |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P  ( ( P x.s B ) -s ( P x.s W ) )  | 
						
							| 167 | 166 | simprd |  |-  ( ph -> ( ( P  ( ( P x.s B ) -s ( P x.s W ) )  | 
						
							| 168 | 121 126 167 | mp2and |  |-  ( ph -> ( ( P x.s B ) -s ( P x.s W ) )  | 
						
							| 169 | 15 26 | subscld |  |-  ( ph -> ( ( P x.s B ) -s ( P x.s W ) ) e. No ) | 
						
							| 170 | 31 33 | subscld |  |-  ( ph -> ( ( V x.s B ) -s ( V x.s W ) ) e. No ) | 
						
							| 171 | 169 170 24 | sltadd1d |  |-  ( ph -> ( ( ( P x.s B ) -s ( P x.s W ) )  ( ( ( P x.s B ) -s ( P x.s W ) ) +s ( A x.s W ) )  | 
						
							| 172 | 168 171 | mpbid |  |-  ( ph -> ( ( ( P x.s B ) -s ( P x.s W ) ) +s ( A x.s W ) )  | 
						
							| 173 | 15 24 26 | addsubsd |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) = ( ( ( P x.s B ) -s ( P x.s W ) ) +s ( A x.s W ) ) ) | 
						
							| 174 | 31 24 33 | addsubsd |  |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( ( V x.s B ) -s ( V x.s W ) ) +s ( A x.s W ) ) ) | 
						
							| 175 | 172 173 174 | 3brtr4d |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) )  | 
						
							| 176 | 175 | adantr |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) )  | 
						
							| 177 | 22 28 35 118 176 | slttrd |  |-  ( ( ph /\ Q  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 178 | 177 | ex |  |-  ( ph -> ( Q  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 179 |  | oveq2 |  |-  ( Q = W -> ( A x.s Q ) = ( A x.s W ) ) | 
						
							| 180 | 179 | oveq2d |  |-  ( Q = W -> ( ( P x.s B ) +s ( A x.s Q ) ) = ( ( P x.s B ) +s ( A x.s W ) ) ) | 
						
							| 181 |  | oveq2 |  |-  ( Q = W -> ( P x.s Q ) = ( P x.s W ) ) | 
						
							| 182 | 180 181 | oveq12d |  |-  ( Q = W -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) ) | 
						
							| 183 | 182 | breq1d |  |-  ( Q = W -> ( ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) )  | 
						
							| 184 | 175 183 | syl5ibrcom |  |-  ( ph -> ( Q = W -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 185 | 21 | adantr |  |-  ( ( ph /\ W  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) | 
						
							| 186 | 31 18 | addscld |  |-  ( ph -> ( ( V x.s B ) +s ( A x.s Q ) ) e. No ) | 
						
							| 187 | 1 30 17 | mulsproplem4 |  |-  ( ph -> ( V x.s Q ) e. No ) | 
						
							| 188 | 186 187 | subscld |  |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) e. No ) | 
						
							| 189 | 188 | adantr |  |-  ( ( ph /\ W  ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) e. No ) | 
						
							| 190 | 34 | adantr |  |-  ( ( ph /\ W  ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) | 
						
							| 191 | 123 5 125 | ssltsepcd |  |-  ( ph -> Q  | 
						
							| 192 | 50 | uneq1i |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) | 
						
							| 193 |  | 0un |  |-  ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) | 
						
							| 194 | 192 193 | eqtri |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) | 
						
							| 195 | 62 137 | jca |  |-  ( ph -> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 196 |  | naddel12 |  |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 197 | 58 59 196 | mp2an |  |-  ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 198 | 133 57 197 | syl2anc |  |-  ( ph -> ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 199 | 141 198 | jca |  |-  ( ph -> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 200 | 80 147 | onun2i |  |-  ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On | 
						
							| 201 |  | naddcl |  |-  ( ( ( bday ` V ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` V ) +no ( bday ` Q ) ) e. On ) | 
						
							| 202 | 134 73 201 | mp2an |  |-  ( ( bday ` V ) +no ( bday ` Q ) ) e. On | 
						
							| 203 | 150 202 | onun2i |  |-  ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On | 
						
							| 204 |  | onunel |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 205 | 200 203 90 204 | mp3an |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 206 |  | onunel |  |-  ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 207 | 80 147 90 206 | mp3an |  |-  ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 208 |  | onunel |  |-  ( ( ( ( bday ` P ) +no ( bday ` B ) ) e. On /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 209 | 150 202 90 208 | mp3an |  |-  ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 210 | 207 209 | anbi12i |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 211 | 205 210 | bitri |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 212 | 195 199 211 | sylanbrc |  |-  ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 213 |  | elun1 |  |-  ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 214 | 212 213 | syl |  |-  ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 215 | 194 214 | eqeltrid |  |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 216 | 1 42 42 44 128 9 3 215 | mulsproplem1 |  |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P  ( ( P x.s B ) -s ( P x.s Q ) )  | 
						
							| 217 | 216 | simprd |  |-  ( ph -> ( ( P  ( ( P x.s B ) -s ( P x.s Q ) )  | 
						
							| 218 | 121 191 217 | mp2and |  |-  ( ph -> ( ( P x.s B ) -s ( P x.s Q ) )  | 
						
							| 219 | 15 20 | subscld |  |-  ( ph -> ( ( P x.s B ) -s ( P x.s Q ) ) e. No ) | 
						
							| 220 | 31 187 | subscld |  |-  ( ph -> ( ( V x.s B ) -s ( V x.s Q ) ) e. No ) | 
						
							| 221 | 219 220 18 | sltadd1d |  |-  ( ph -> ( ( ( P x.s B ) -s ( P x.s Q ) )  ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) )  | 
						
							| 222 | 218 221 | mpbid |  |-  ( ph -> ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) )  | 
						
							| 223 | 15 18 20 | addsubsd |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) ) | 
						
							| 224 | 31 18 187 | addsubsd |  |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) = ( ( ( V x.s B ) -s ( V x.s Q ) ) +s ( A x.s Q ) ) ) | 
						
							| 225 | 222 223 224 | 3brtr4d |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 226 | 225 | adantr |  |-  ( ( ph /\ W  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 227 |  | ssltright |  |-  ( A e. No -> { A } < | 
						
							| 228 | 2 227 | syl |  |-  ( ph -> { A } < | 
						
							| 229 | 228 39 6 | ssltsepcd |  |-  ( ph -> A  | 
						
							| 230 | 50 | uneq1i |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) | 
						
							| 231 |  | 0un |  |-  ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) | 
						
							| 232 | 230 231 | eqtri |  |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) | 
						
							| 233 | 68 198 | jca |  |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 234 | 76 144 | jca |  |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 235 | 82 202 | onun2i |  |-  ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On | 
						
							| 236 | 87 152 | onun2i |  |-  ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On | 
						
							| 237 |  | onunel |  |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 238 | 235 236 90 237 | mp3an |  |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 239 |  | onunel |  |-  ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 240 | 82 202 90 239 | mp3an |  |-  ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 241 |  | onunel |  |-  ( ( ( ( bday ` A ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 242 | 87 152 90 241 | mp3an |  |-  ( ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) | 
						
							| 243 | 240 242 | anbi12i |  |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 244 | 238 243 | bitri |  |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) | 
						
							| 245 | 233 234 244 | sylanbrc |  |-  ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 246 |  | elun1 |  |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 247 | 245 246 | syl |  |-  ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 248 | 232 247 | eqeltrid |  |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) | 
						
							| 249 | 1 42 42 2 128 10 9 248 | mulsproplem1 |  |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( A  ( ( A x.s Q ) -s ( A x.s W ) )  | 
						
							| 250 | 249 | simprd |  |-  ( ph -> ( ( A  ( ( A x.s Q ) -s ( A x.s W ) )  | 
						
							| 251 | 229 250 | mpand |  |-  ( ph -> ( W  ( ( A x.s Q ) -s ( A x.s W ) )  | 
						
							| 252 | 251 | imp |  |-  ( ( ph /\ W  ( ( A x.s Q ) -s ( A x.s W ) )  | 
						
							| 253 | 18 187 24 33 | sltsubsubbd |  |-  ( ph -> ( ( ( A x.s Q ) -s ( A x.s W ) )  ( ( A x.s Q ) -s ( V x.s Q ) )  | 
						
							| 254 | 18 187 | subscld |  |-  ( ph -> ( ( A x.s Q ) -s ( V x.s Q ) ) e. No ) | 
						
							| 255 | 24 33 | subscld |  |-  ( ph -> ( ( A x.s W ) -s ( V x.s W ) ) e. No ) | 
						
							| 256 | 254 255 31 | sltadd2d |  |-  ( ph -> ( ( ( A x.s Q ) -s ( V x.s Q ) )  ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) )  | 
						
							| 257 | 253 256 | bitrd |  |-  ( ph -> ( ( ( A x.s Q ) -s ( A x.s W ) )  ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) )  | 
						
							| 258 | 257 | adantr |  |-  ( ( ph /\ W  ( ( ( A x.s Q ) -s ( A x.s W ) )  ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) )  | 
						
							| 259 | 252 258 | mpbid |  |-  ( ( ph /\ W  ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) )  | 
						
							| 260 | 31 18 187 | addsubsassd |  |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) = ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) ) | 
						
							| 261 | 260 | adantr |  |-  ( ( ph /\ W  ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) = ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) ) | 
						
							| 262 | 31 24 33 | addsubsassd |  |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( V x.s B ) +s ( ( A x.s W ) -s ( V x.s W ) ) ) ) | 
						
							| 263 | 262 | adantr |  |-  ( ( ph /\ W  ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( V x.s B ) +s ( ( A x.s W ) -s ( V x.s W ) ) ) ) | 
						
							| 264 | 259 261 263 | 3brtr4d |  |-  ( ( ph /\ W  ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) )  | 
						
							| 265 | 185 189 190 226 264 | slttrd |  |-  ( ( ph /\ W  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 266 | 265 | ex |  |-  ( ph -> ( W  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 267 | 178 184 266 | 3jaod |  |-  ( ph -> ( ( Q  ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  | 
						
							| 268 | 12 267 | mpd |  |-  ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) )  |