Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
2 |
|
mulsproplem6.1 |
|- ( ph -> A e. No ) |
3 |
|
mulsproplem6.2 |
|- ( ph -> B e. No ) |
4 |
|
mulsproplem6.3 |
|- ( ph -> P e. ( _Left ` A ) ) |
5 |
|
mulsproplem6.4 |
|- ( ph -> Q e. ( _Left ` B ) ) |
6 |
|
mulsproplem6.5 |
|- ( ph -> V e. ( _Right ` A ) ) |
7 |
|
mulsproplem6.6 |
|- ( ph -> W e. ( _Left ` B ) ) |
8 |
|
leftssno |
|- ( _Left ` B ) C_ No |
9 |
8 5
|
sselid |
|- ( ph -> Q e. No ) |
10 |
8 7
|
sselid |
|- ( ph -> W e. No ) |
11 |
|
sltlin |
|- ( ( Q e. No /\ W e. No ) -> ( Q |
12 |
9 10 11
|
syl2anc |
|- ( ph -> ( Q |
13 |
|
leftssold |
|- ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) |
14 |
13 4
|
sselid |
|- ( ph -> P e. ( _Old ` ( bday ` A ) ) ) |
15 |
1 14 3
|
mulsproplem2 |
|- ( ph -> ( P x.s B ) e. No ) |
16 |
|
leftssold |
|- ( _Left ` B ) C_ ( _Old ` ( bday ` B ) ) |
17 |
16 5
|
sselid |
|- ( ph -> Q e. ( _Old ` ( bday ` B ) ) ) |
18 |
1 2 17
|
mulsproplem3 |
|- ( ph -> ( A x.s Q ) e. No ) |
19 |
15 18
|
addscld |
|- ( ph -> ( ( P x.s B ) +s ( A x.s Q ) ) e. No ) |
20 |
1 14 17
|
mulsproplem4 |
|- ( ph -> ( P x.s Q ) e. No ) |
21 |
19 20
|
subscld |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) |
22 |
21
|
adantr |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) |
23 |
16 7
|
sselid |
|- ( ph -> W e. ( _Old ` ( bday ` B ) ) ) |
24 |
1 2 23
|
mulsproplem3 |
|- ( ph -> ( A x.s W ) e. No ) |
25 |
15 24
|
addscld |
|- ( ph -> ( ( P x.s B ) +s ( A x.s W ) ) e. No ) |
26 |
1 14 23
|
mulsproplem4 |
|- ( ph -> ( P x.s W ) e. No ) |
27 |
25 26
|
subscld |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) e. No ) |
28 |
27
|
adantr |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) e. No ) |
29 |
|
rightssold |
|- ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) |
30 |
29 6
|
sselid |
|- ( ph -> V e. ( _Old ` ( bday ` A ) ) ) |
31 |
1 30 3
|
mulsproplem2 |
|- ( ph -> ( V x.s B ) e. No ) |
32 |
31 24
|
addscld |
|- ( ph -> ( ( V x.s B ) +s ( A x.s W ) ) e. No ) |
33 |
1 30 23
|
mulsproplem4 |
|- ( ph -> ( V x.s W ) e. No ) |
34 |
32 33
|
subscld |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) |
35 |
34
|
adantr |
|- ( ( ph /\ Q ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) |
36 |
|
ssltleft |
|- ( A e. No -> ( _Left ` A ) < |
37 |
2 36
|
syl |
|- ( ph -> ( _Left ` A ) < |
38 |
|
snidg |
|- ( A e. No -> A e. { A } ) |
39 |
2 38
|
syl |
|- ( ph -> A e. { A } ) |
40 |
37 4 39
|
ssltsepcd |
|- ( ph -> P |
41 |
|
0sno |
|- 0s e. No |
42 |
41
|
a1i |
|- ( ph -> 0s e. No ) |
43 |
|
leftssno |
|- ( _Left ` A ) C_ No |
44 |
43 4
|
sselid |
|- ( ph -> P e. No ) |
45 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
46 |
45 45
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
47 |
|
0elon |
|- (/) e. On |
48 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
49 |
47 48
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
50 |
46 49
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
51 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) |
52 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) |
53 |
51 52
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) |
54 |
|
oldbdayim |
|- ( P e. ( _Old ` ( bday ` A ) ) -> ( bday ` P ) e. ( bday ` A ) ) |
55 |
14 54
|
syl |
|- ( ph -> ( bday ` P ) e. ( bday ` A ) ) |
56 |
|
oldbdayim |
|- ( Q e. ( _Old ` ( bday ` B ) ) -> ( bday ` Q ) e. ( bday ` B ) ) |
57 |
17 56
|
syl |
|- ( ph -> ( bday ` Q ) e. ( bday ` B ) ) |
58 |
|
bdayelon |
|- ( bday ` A ) e. On |
59 |
|
bdayelon |
|- ( bday ` B ) e. On |
60 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
61 |
58 59 60
|
mp2an |
|- ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
62 |
55 57 61
|
syl2anc |
|- ( ph -> ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
63 |
|
oldbdayim |
|- ( W e. ( _Old ` ( bday ` B ) ) -> ( bday ` W ) e. ( bday ` B ) ) |
64 |
23 63
|
syl |
|- ( ph -> ( bday ` W ) e. ( bday ` B ) ) |
65 |
|
bdayelon |
|- ( bday ` W ) e. On |
66 |
|
naddel2 |
|- ( ( ( bday ` W ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
67 |
65 59 58 66
|
mp3an |
|- ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
68 |
64 67
|
sylib |
|- ( ph -> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
69 |
62 68
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
70 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
71 |
58 59 70
|
mp2an |
|- ( ( ( bday ` P ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
72 |
55 64 71
|
syl2anc |
|- ( ph -> ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
73 |
|
bdayelon |
|- ( bday ` Q ) e. On |
74 |
|
naddel2 |
|- ( ( ( bday ` Q ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` Q ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
75 |
73 59 58 74
|
mp3an |
|- ( ( bday ` Q ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
76 |
57 75
|
sylib |
|- ( ph -> ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
77 |
72 76
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
78 |
|
bdayelon |
|- ( bday ` P ) e. On |
79 |
|
naddcl |
|- ( ( ( bday ` P ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` P ) +no ( bday ` Q ) ) e. On ) |
80 |
78 73 79
|
mp2an |
|- ( ( bday ` P ) +no ( bday ` Q ) ) e. On |
81 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` A ) +no ( bday ` W ) ) e. On ) |
82 |
58 65 81
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` W ) ) e. On |
83 |
80 82
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. On |
84 |
|
naddcl |
|- ( ( ( bday ` P ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` P ) +no ( bday ` W ) ) e. On ) |
85 |
78 65 84
|
mp2an |
|- ( ( bday ` P ) +no ( bday ` W ) ) e. On |
86 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` A ) +no ( bday ` Q ) ) e. On ) |
87 |
58 73 86
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` Q ) ) e. On |
88 |
85 87
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On |
89 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` A ) +no ( bday ` B ) ) e. On ) |
90 |
58 59 89
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` B ) ) e. On |
91 |
|
onunel |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
92 |
83 88 90 91
|
mp3an |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
93 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
94 |
80 82 90 93
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
95 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
96 |
85 87 90 95
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
97 |
94 96
|
anbi12i |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
98 |
92 97
|
bitri |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
99 |
69 77 98
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
100 |
|
elun1 |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
101 |
99 100
|
syl |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
102 |
53 101
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` A ) +no ( bday ` W ) ) ) u. ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` A ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
103 |
1 42 42 44 2 9 10 102
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P ( ( P x.s W ) -s ( P x.s Q ) ) |
104 |
103
|
simprd |
|- ( ph -> ( ( P ( ( P x.s W ) -s ( P x.s Q ) ) |
105 |
40 104
|
mpand |
|- ( ph -> ( Q ( ( P x.s W ) -s ( P x.s Q ) ) |
106 |
105
|
imp |
|- ( ( ph /\ Q ( ( P x.s W ) -s ( P x.s Q ) ) |
107 |
26 24 20 18
|
sltsubsub3bd |
|- ( ph -> ( ( ( P x.s W ) -s ( P x.s Q ) ) ( ( A x.s Q ) -s ( P x.s Q ) ) |
108 |
18 20
|
subscld |
|- ( ph -> ( ( A x.s Q ) -s ( P x.s Q ) ) e. No ) |
109 |
24 26
|
subscld |
|- ( ph -> ( ( A x.s W ) -s ( P x.s W ) ) e. No ) |
110 |
108 109 15
|
sltadd2d |
|- ( ph -> ( ( ( A x.s Q ) -s ( P x.s Q ) ) ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
111 |
107 110
|
bitrd |
|- ( ph -> ( ( ( P x.s W ) -s ( P x.s Q ) ) ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
112 |
111
|
adantr |
|- ( ( ph /\ Q ( ( ( P x.s W ) -s ( P x.s Q ) ) ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
113 |
106 112
|
mpbid |
|- ( ( ph /\ Q ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) |
114 |
15 18 20
|
addsubsassd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) ) |
115 |
114
|
adantr |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( P x.s B ) +s ( ( A x.s Q ) -s ( P x.s Q ) ) ) ) |
116 |
15 24 26
|
addsubsassd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) = ( ( P x.s B ) +s ( ( A x.s W ) -s ( P x.s W ) ) ) ) |
117 |
116
|
adantr |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) = ( ( P x.s B ) +s ( ( A x.s W ) -s ( P x.s W ) ) ) ) |
118 |
113 115 117
|
3brtr4d |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
119 |
|
lltropt |
|- ( _Left ` A ) < |
120 |
119
|
a1i |
|- ( ph -> ( _Left ` A ) < |
121 |
120 4 6
|
ssltsepcd |
|- ( ph -> P |
122 |
|
ssltleft |
|- ( B e. No -> ( _Left ` B ) < |
123 |
3 122
|
syl |
|- ( ph -> ( _Left ` B ) < |
124 |
|
snidg |
|- ( B e. No -> B e. { B } ) |
125 |
3 124
|
syl |
|- ( ph -> B e. { B } ) |
126 |
123 7 125
|
ssltsepcd |
|- ( ph -> W |
127 |
|
rightssno |
|- ( _Right ` A ) C_ No |
128 |
127 6
|
sselid |
|- ( ph -> V e. No ) |
129 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) |
130 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
131 |
129 130
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
132 |
|
oldbdayim |
|- ( V e. ( _Old ` ( bday ` A ) ) -> ( bday ` V ) e. ( bday ` A ) ) |
133 |
30 132
|
syl |
|- ( ph -> ( bday ` V ) e. ( bday ` A ) ) |
134 |
|
bdayelon |
|- ( bday ` V ) e. On |
135 |
|
naddel1 |
|- ( ( ( bday ` V ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
136 |
134 58 59 135
|
mp3an |
|- ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
137 |
133 136
|
sylib |
|- ( ph -> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
138 |
72 137
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
139 |
|
naddel1 |
|- ( ( ( bday ` P ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` P ) e. ( bday ` A ) <-> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
140 |
78 58 59 139
|
mp3an |
|- ( ( bday ` P ) e. ( bday ` A ) <-> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
141 |
55 140
|
sylib |
|- ( ph -> ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
142 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
143 |
58 59 142
|
mp2an |
|- ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
144 |
133 64 143
|
syl2anc |
|- ( ph -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
145 |
141 144
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
146 |
|
naddcl |
|- ( ( ( bday ` V ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) +no ( bday ` B ) ) e. On ) |
147 |
134 59 146
|
mp2an |
|- ( ( bday ` V ) +no ( bday ` B ) ) e. On |
148 |
85 147
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On |
149 |
|
naddcl |
|- ( ( ( bday ` P ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` P ) +no ( bday ` B ) ) e. On ) |
150 |
78 59 149
|
mp2an |
|- ( ( bday ` P ) +no ( bday ` B ) ) e. On |
151 |
|
naddcl |
|- ( ( ( bday ` V ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. On ) |
152 |
134 65 151
|
mp2an |
|- ( ( bday ` V ) +no ( bday ` W ) ) e. On |
153 |
150 152
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On |
154 |
|
onunel |
|- ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
155 |
148 153 90 154
|
mp3an |
|- ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
156 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
157 |
85 147 90 156
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
158 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` B ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
159 |
150 152 90 158
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
160 |
157 159
|
anbi12i |
|- ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
161 |
155 160
|
bitri |
|- ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
162 |
138 145 161
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
163 |
|
elun1 |
|- ( ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
164 |
162 163
|
syl |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
165 |
131 164
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
166 |
1 42 42 44 128 10 3 165
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P ( ( P x.s B ) -s ( P x.s W ) ) |
167 |
166
|
simprd |
|- ( ph -> ( ( P ( ( P x.s B ) -s ( P x.s W ) ) |
168 |
121 126 167
|
mp2and |
|- ( ph -> ( ( P x.s B ) -s ( P x.s W ) ) |
169 |
15 26
|
subscld |
|- ( ph -> ( ( P x.s B ) -s ( P x.s W ) ) e. No ) |
170 |
31 33
|
subscld |
|- ( ph -> ( ( V x.s B ) -s ( V x.s W ) ) e. No ) |
171 |
169 170 24
|
sltadd1d |
|- ( ph -> ( ( ( P x.s B ) -s ( P x.s W ) ) ( ( ( P x.s B ) -s ( P x.s W ) ) +s ( A x.s W ) ) |
172 |
168 171
|
mpbid |
|- ( ph -> ( ( ( P x.s B ) -s ( P x.s W ) ) +s ( A x.s W ) ) |
173 |
15 24 26
|
addsubsd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) = ( ( ( P x.s B ) -s ( P x.s W ) ) +s ( A x.s W ) ) ) |
174 |
31 24 33
|
addsubsd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( ( V x.s B ) -s ( V x.s W ) ) +s ( A x.s W ) ) ) |
175 |
172 173 174
|
3brtr4d |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) |
176 |
175
|
adantr |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) |
177 |
22 28 35 118 176
|
slttrd |
|- ( ( ph /\ Q ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
178 |
177
|
ex |
|- ( ph -> ( Q ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
179 |
|
oveq2 |
|- ( Q = W -> ( A x.s Q ) = ( A x.s W ) ) |
180 |
179
|
oveq2d |
|- ( Q = W -> ( ( P x.s B ) +s ( A x.s Q ) ) = ( ( P x.s B ) +s ( A x.s W ) ) ) |
181 |
|
oveq2 |
|- ( Q = W -> ( P x.s Q ) = ( P x.s W ) ) |
182 |
180 181
|
oveq12d |
|- ( Q = W -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) ) |
183 |
182
|
breq1d |
|- ( Q = W -> ( ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) ( ( ( P x.s B ) +s ( A x.s W ) ) -s ( P x.s W ) ) |
184 |
175 183
|
syl5ibrcom |
|- ( ph -> ( Q = W -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
185 |
21
|
adantr |
|- ( ( ph /\ W ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) e. No ) |
186 |
31 18
|
addscld |
|- ( ph -> ( ( V x.s B ) +s ( A x.s Q ) ) e. No ) |
187 |
1 30 17
|
mulsproplem4 |
|- ( ph -> ( V x.s Q ) e. No ) |
188 |
186 187
|
subscld |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) e. No ) |
189 |
188
|
adantr |
|- ( ( ph /\ W ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) e. No ) |
190 |
34
|
adantr |
|- ( ( ph /\ W ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) |
191 |
123 5 125
|
ssltsepcd |
|- ( ph -> Q |
192 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) |
193 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) |
194 |
192 193
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) = ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) |
195 |
62 137
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
196 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
197 |
58 59 196
|
mp2an |
|- ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` Q ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
198 |
133 57 197
|
syl2anc |
|- ( ph -> ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
199 |
141 198
|
jca |
|- ( ph -> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
200 |
80 147
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On |
201 |
|
naddcl |
|- ( ( ( bday ` V ) e. On /\ ( bday ` Q ) e. On ) -> ( ( bday ` V ) +no ( bday ` Q ) ) e. On ) |
202 |
134 73 201
|
mp2an |
|- ( ( bday ` V ) +no ( bday ` Q ) ) e. On |
203 |
150 202
|
onun2i |
|- ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On |
204 |
|
onunel |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
205 |
200 203 90 204
|
mp3an |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
206 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
207 |
80 147 90 206
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
208 |
|
onunel |
|- ( ( ( ( bday ` P ) +no ( bday ` B ) ) e. On /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
209 |
150 202 90 208
|
mp3an |
|- ( ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
210 |
207 209
|
anbi12i |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
211 |
205 210
|
bitri |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` P ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
212 |
195 199 211
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
213 |
|
elun1 |
|- ( ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
214 |
212 213
|
syl |
|- ( ph -> ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
215 |
194 214
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` P ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` P ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
216 |
1 42 42 44 128 9 3 215
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( P ( ( P x.s B ) -s ( P x.s Q ) ) |
217 |
216
|
simprd |
|- ( ph -> ( ( P ( ( P x.s B ) -s ( P x.s Q ) ) |
218 |
121 191 217
|
mp2and |
|- ( ph -> ( ( P x.s B ) -s ( P x.s Q ) ) |
219 |
15 20
|
subscld |
|- ( ph -> ( ( P x.s B ) -s ( P x.s Q ) ) e. No ) |
220 |
31 187
|
subscld |
|- ( ph -> ( ( V x.s B ) -s ( V x.s Q ) ) e. No ) |
221 |
219 220 18
|
sltadd1d |
|- ( ph -> ( ( ( P x.s B ) -s ( P x.s Q ) ) ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) |
222 |
218 221
|
mpbid |
|- ( ph -> ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) |
223 |
15 18 20
|
addsubsd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) = ( ( ( P x.s B ) -s ( P x.s Q ) ) +s ( A x.s Q ) ) ) |
224 |
31 18 187
|
addsubsd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) = ( ( ( V x.s B ) -s ( V x.s Q ) ) +s ( A x.s Q ) ) ) |
225 |
222 223 224
|
3brtr4d |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
226 |
225
|
adantr |
|- ( ( ph /\ W ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
227 |
|
ssltright |
|- ( A e. No -> { A } < |
228 |
2 227
|
syl |
|- ( ph -> { A } < |
229 |
228 39 6
|
ssltsepcd |
|- ( ph -> A |
230 |
50
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) |
231 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
232 |
230 231
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
233 |
68 198
|
jca |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
234 |
76 144
|
jca |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
235 |
82 202
|
onun2i |
|- ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On |
236 |
87 152
|
onun2i |
|- ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On |
237 |
|
onunel |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. On /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
238 |
235 236 90 237
|
mp3an |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
239 |
|
onunel |
|- ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
240 |
82 202 90 239
|
mp3an |
|- ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
241 |
|
onunel |
|- ( ( ( ( bday ` A ) +no ( bday ` Q ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
242 |
87 152 90 241
|
mp3an |
|- ( ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
243 |
240 242
|
anbi12i |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
244 |
238 243
|
bitri |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` Q ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
245 |
233 234 244
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
246 |
|
elun1 |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
247 |
245 246
|
syl |
|- ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
248 |
232 247
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` Q ) ) ) u. ( ( ( bday ` A ) +no ( bday ` Q ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
249 |
1 42 42 2 128 10 9 248
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( A ( ( A x.s Q ) -s ( A x.s W ) ) |
250 |
249
|
simprd |
|- ( ph -> ( ( A ( ( A x.s Q ) -s ( A x.s W ) ) |
251 |
229 250
|
mpand |
|- ( ph -> ( W ( ( A x.s Q ) -s ( A x.s W ) ) |
252 |
251
|
imp |
|- ( ( ph /\ W ( ( A x.s Q ) -s ( A x.s W ) ) |
253 |
18 187 24 33
|
sltsubsubbd |
|- ( ph -> ( ( ( A x.s Q ) -s ( A x.s W ) ) ( ( A x.s Q ) -s ( V x.s Q ) ) |
254 |
18 187
|
subscld |
|- ( ph -> ( ( A x.s Q ) -s ( V x.s Q ) ) e. No ) |
255 |
24 33
|
subscld |
|- ( ph -> ( ( A x.s W ) -s ( V x.s W ) ) e. No ) |
256 |
254 255 31
|
sltadd2d |
|- ( ph -> ( ( ( A x.s Q ) -s ( V x.s Q ) ) ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) |
257 |
253 256
|
bitrd |
|- ( ph -> ( ( ( A x.s Q ) -s ( A x.s W ) ) ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) |
258 |
257
|
adantr |
|- ( ( ph /\ W ( ( ( A x.s Q ) -s ( A x.s W ) ) ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) |
259 |
252 258
|
mpbid |
|- ( ( ph /\ W ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) |
260 |
31 18 187
|
addsubsassd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) = ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) ) |
261 |
260
|
adantr |
|- ( ( ph /\ W ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) = ( ( V x.s B ) +s ( ( A x.s Q ) -s ( V x.s Q ) ) ) ) |
262 |
31 24 33
|
addsubsassd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( V x.s B ) +s ( ( A x.s W ) -s ( V x.s W ) ) ) ) |
263 |
262
|
adantr |
|- ( ( ph /\ W ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( V x.s B ) +s ( ( A x.s W ) -s ( V x.s W ) ) ) ) |
264 |
259 261 263
|
3brtr4d |
|- ( ( ph /\ W ( ( ( V x.s B ) +s ( A x.s Q ) ) -s ( V x.s Q ) ) |
265 |
185 189 190 226 264
|
slttrd |
|- ( ( ph /\ W ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
266 |
265
|
ex |
|- ( ph -> ( W ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
267 |
178 184 266
|
3jaod |
|- ( ph -> ( ( Q ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |
268 |
12 267
|
mpd |
|- ( ph -> ( ( ( P x.s B ) +s ( A x.s Q ) ) -s ( P x.s Q ) ) |