| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 2 |
|
mulsproplem9.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
mulsproplem9.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 4 |
|
eqid |
⊢ ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 5 |
4
|
rnmpo |
⊢ ran ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } |
| 6 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
| 7 |
|
fvex |
⊢ ( L ‘ 𝐵 ) ∈ V |
| 8 |
6 7
|
mpoex |
⊢ ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V |
| 9 |
8
|
rnex |
⊢ ran ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V |
| 10 |
5 9
|
eqeltrri |
⊢ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∈ V |
| 11 |
|
eqid |
⊢ ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 12 |
11
|
rnmpo |
⊢ ran ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } |
| 13 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
| 14 |
|
fvex |
⊢ ( R ‘ 𝐵 ) ∈ V |
| 15 |
13 14
|
mpoex |
⊢ ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V |
| 16 |
15
|
rnex |
⊢ ran ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V |
| 17 |
12 16
|
eqeltrri |
⊢ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ∈ V |
| 18 |
10 17
|
unex |
⊢ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∈ V |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∈ V ) |
| 20 |
|
eqid |
⊢ ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 21 |
20
|
rnmpo |
⊢ ran ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } |
| 22 |
6 14
|
mpoex |
⊢ ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V |
| 23 |
22
|
rnex |
⊢ ran ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V |
| 24 |
21 23
|
eqeltrri |
⊢ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∈ V |
| 25 |
|
eqid |
⊢ ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 26 |
25
|
rnmpo |
⊢ ran ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } |
| 27 |
13 7
|
mpoex |
⊢ ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V |
| 28 |
27
|
rnex |
⊢ ran ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V |
| 29 |
26 28
|
eqeltrri |
⊢ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ∈ V |
| 30 |
24 29
|
unex |
⊢ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V ) |
| 32 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 33 |
|
leftssold |
⊢ ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
| 34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝 ∈ ( L ‘ 𝐴 ) ) |
| 35 |
33 34
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 37 |
32 35 36
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
| 38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
| 39 |
|
leftssold |
⊢ ( L ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
| 40 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞 ∈ ( L ‘ 𝐵 ) ) |
| 41 |
39 40
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 42 |
32 38 41
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
| 43 |
37 42
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ∈ No ) |
| 44 |
32 35 41
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
| 45 |
43 44
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 46 |
|
eleq1 |
⊢ ( 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑔 ∈ No ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) ) |
| 47 |
45 46
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑔 ∈ No ) ) |
| 48 |
47
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑔 ∈ No ) ) |
| 49 |
48
|
abssdv |
⊢ ( 𝜑 → { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ No ) |
| 50 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 51 |
|
rightssold |
⊢ ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
| 52 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
| 53 |
51 52
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 55 |
50 53 54
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
| 56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
| 57 |
|
rightssold |
⊢ ( R ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
| 58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠 ∈ ( R ‘ 𝐵 ) ) |
| 59 |
57 58
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 60 |
50 56 59
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
| 61 |
55 60
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
| 62 |
50 53 59
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
| 63 |
61 62
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
| 64 |
|
eleq1 |
⊢ ( ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ℎ ∈ No ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) ) |
| 65 |
63 64
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ℎ ∈ No ) ) |
| 66 |
65
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ℎ ∈ No ) ) |
| 67 |
66
|
abssdv |
⊢ ( 𝜑 → { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ No ) |
| 68 |
49 67
|
unssd |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ⊆ No ) |
| 69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 70 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡 ∈ ( L ‘ 𝐴 ) ) |
| 71 |
33 70
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 72 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 73 |
69 71 72
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
| 74 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
| 75 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢 ∈ ( R ‘ 𝐵 ) ) |
| 76 |
57 75
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 77 |
69 74 76
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
| 78 |
73 77
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No ) |
| 79 |
69 71 76
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
| 80 |
78 79
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 81 |
|
eleq1 |
⊢ ( 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑖 ∈ No ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) ) |
| 82 |
80 81
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑖 ∈ No ) ) |
| 83 |
82
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑖 ∈ No ) ) |
| 84 |
83
|
abssdv |
⊢ ( 𝜑 → { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ No ) |
| 85 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 86 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣 ∈ ( R ‘ 𝐴 ) ) |
| 87 |
51 86
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 88 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 89 |
85 87 88
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
| 90 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
| 91 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤 ∈ ( L ‘ 𝐵 ) ) |
| 92 |
39 91
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 93 |
85 90 92
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
| 94 |
89 93
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
| 95 |
85 87 92
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
| 96 |
94 95
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 97 |
|
eleq1 |
⊢ ( 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑗 ∈ No ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) ) |
| 98 |
96 97
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑗 ∈ No ) ) |
| 99 |
98
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑗 ∈ No ) ) |
| 100 |
99
|
abssdv |
⊢ ( 𝜑 → { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ No ) |
| 101 |
84 100
|
unssd |
⊢ ( 𝜑 → ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ⊆ No ) |
| 102 |
|
elun |
⊢ ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( 𝑥 ∈ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) |
| 103 |
|
vex |
⊢ 𝑥 ∈ V |
| 104 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 105 |
104
|
2rexbidv |
⊢ ( 𝑔 = 𝑥 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 106 |
103 105
|
elab |
⊢ ( 𝑥 ∈ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 107 |
|
eqeq1 |
⊢ ( ℎ = 𝑥 → ( ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 108 |
107
|
2rexbidv |
⊢ ( ℎ = 𝑥 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 109 |
103 108
|
elab |
⊢ ( 𝑥 ∈ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 110 |
106 109
|
orbi12i |
⊢ ( ( 𝑥 ∈ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 111 |
102 110
|
bitri |
⊢ ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 112 |
|
elun |
⊢ ( 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( 𝑦 ∈ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
| 113 |
|
vex |
⊢ 𝑦 ∈ V |
| 114 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑦 → ( 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 115 |
114
|
2rexbidv |
⊢ ( 𝑖 = 𝑦 → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 116 |
113 115
|
elab |
⊢ ( 𝑦 ∈ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 117 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑦 → ( 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 118 |
117
|
2rexbidv |
⊢ ( 𝑗 = 𝑦 → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 119 |
113 118
|
elab |
⊢ ( 𝑦 ∈ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 120 |
116 119
|
orbi12i |
⊢ ( ( 𝑦 ∈ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 121 |
112 120
|
bitri |
⊢ ( 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 122 |
111 121
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∧ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) |
| 123 |
|
anddi |
⊢ ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∧ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ↔ ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ∨ ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) ) |
| 124 |
122 123
|
bitri |
⊢ ( ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ∨ ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) ) |
| 125 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 126 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
| 127 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
| 128 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑝 ∈ ( L ‘ 𝐴 ) ) |
| 129 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑞 ∈ ( L ‘ 𝐵 ) ) |
| 130 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑡 ∈ ( L ‘ 𝐴 ) ) |
| 131 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑢 ∈ ( R ‘ 𝐵 ) ) |
| 132 |
125 126 127 128 129 130 131
|
mulsproplem5 |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 133 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 134 |
132 133
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 135 |
134
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 136 |
135
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 137 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑥 <s 𝑦 ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 138 |
137
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) ) |
| 139 |
136 138
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 140 |
139
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 141 |
140
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) → 𝑥 <s 𝑦 ) ) |
| 142 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 143 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
| 144 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
| 145 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑝 ∈ ( L ‘ 𝐴 ) ) |
| 146 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑞 ∈ ( L ‘ 𝐵 ) ) |
| 147 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑣 ∈ ( R ‘ 𝐴 ) ) |
| 148 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑤 ∈ ( L ‘ 𝐵 ) ) |
| 149 |
142 143 144 145 146 147 148
|
mulsproplem6 |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 150 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 151 |
149 150
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 152 |
151
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 153 |
152
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
| 154 |
137
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) ) |
| 155 |
153 154
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 156 |
155
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 157 |
156
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → 𝑥 <s 𝑦 ) ) |
| 158 |
141 157
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) → 𝑥 <s 𝑦 ) ) |
| 159 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 160 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
| 161 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
| 162 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
| 163 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑠 ∈ ( R ‘ 𝐵 ) ) |
| 164 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑡 ∈ ( L ‘ 𝐴 ) ) |
| 165 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑢 ∈ ( R ‘ 𝐵 ) ) |
| 166 |
159 160 161 162 163 164 165
|
mulsproplem7 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 167 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 168 |
166 167
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 169 |
168
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 170 |
169
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 171 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( 𝑥 <s 𝑦 ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 172 |
171
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) ) |
| 173 |
170 172
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 174 |
173
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 175 |
174
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) → 𝑥 <s 𝑦 ) ) |
| 176 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 177 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
| 178 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
| 179 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
| 180 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑠 ∈ ( R ‘ 𝐵 ) ) |
| 181 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑣 ∈ ( R ‘ 𝐴 ) ) |
| 182 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑤 ∈ ( L ‘ 𝐵 ) ) |
| 183 |
176 177 178 179 180 181 182
|
mulsproplem8 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 184 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 185 |
183 184
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 186 |
185
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 187 |
186
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
| 188 |
171
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) ) |
| 189 |
187 188
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 190 |
189
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
| 191 |
190
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → 𝑥 <s 𝑦 ) ) |
| 192 |
175 191
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) → 𝑥 <s 𝑦 ) ) |
| 193 |
158 192
|
jaod |
⊢ ( 𝜑 → ( ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ∨ ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) → 𝑥 <s 𝑦 ) ) |
| 194 |
124 193
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 ) ) |
| 195 |
194
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 ) |
| 196 |
19 31 68 101 195
|
ssltd |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |