| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
| 2 |
|
mulsproplem8.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
mulsproplem8.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 4 |
|
mulsproplem8.3 |
⊢ ( 𝜑 → 𝑅 ∈ ( R ‘ 𝐴 ) ) |
| 5 |
|
mulsproplem8.4 |
⊢ ( 𝜑 → 𝑆 ∈ ( R ‘ 𝐵 ) ) |
| 6 |
|
mulsproplem8.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( R ‘ 𝐴 ) ) |
| 7 |
|
mulsproplem8.6 |
⊢ ( 𝜑 → 𝑊 ∈ ( L ‘ 𝐵 ) ) |
| 8 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 9 |
8 4
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ No ) |
| 10 |
8 6
|
sselid |
⊢ ( 𝜑 → 𝑉 ∈ No ) |
| 11 |
|
sltlin |
⊢ ( ( 𝑅 ∈ No ∧ 𝑉 ∈ No ) → ( 𝑅 <s 𝑉 ∨ 𝑅 = 𝑉 ∨ 𝑉 <s 𝑅 ) ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 <s 𝑉 ∨ 𝑅 = 𝑉 ∨ 𝑉 <s 𝑅 ) ) |
| 13 |
|
rightssold |
⊢ ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
| 14 |
13 4
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 15 |
1 14 3
|
mulsproplem2 |
⊢ ( 𝜑 → ( 𝑅 ·s 𝐵 ) ∈ No ) |
| 16 |
|
rightssold |
⊢ ( R ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
| 17 |
16 5
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 18 |
1 2 17
|
mulsproplem3 |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑆 ) ∈ No ) |
| 19 |
15 18
|
addscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No ) |
| 20 |
1 14 17
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑅 ·s 𝑆 ) ∈ No ) |
| 21 |
19 20
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
| 23 |
|
leftssold |
⊢ ( L ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
| 24 |
23 7
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 25 |
1 2 24
|
mulsproplem3 |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑊 ) ∈ No ) |
| 26 |
15 25
|
addscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) ∈ No ) |
| 27 |
1 14 24
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑅 ·s 𝑊 ) ∈ No ) |
| 28 |
26 27
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No ) |
| 30 |
13 6
|
sselid |
⊢ ( 𝜑 → 𝑉 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 31 |
1 30 3
|
mulsproplem2 |
⊢ ( 𝜑 → ( 𝑉 ·s 𝐵 ) ∈ No ) |
| 32 |
31 25
|
addscld |
⊢ ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) ∈ No ) |
| 33 |
1 30 24
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑉 ·s 𝑊 ) ∈ No ) |
| 34 |
32 33
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No ) |
| 36 |
|
ssltright |
⊢ ( 𝐴 ∈ No → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |
| 37 |
2 36
|
syl |
⊢ ( 𝜑 → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |
| 38 |
|
snidg |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ { 𝐴 } ) |
| 39 |
2 38
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 40 |
37 39 4
|
ssltsepcd |
⊢ ( 𝜑 → 𝐴 <s 𝑅 ) |
| 41 |
|
lltropt |
⊢ ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) ) |
| 43 |
42 7 5
|
ssltsepcd |
⊢ ( 𝜑 → 𝑊 <s 𝑆 ) |
| 44 |
|
0sno |
⊢ 0s ∈ No |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
| 46 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
| 47 |
46 7
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ No ) |
| 48 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
| 49 |
48 5
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ No ) |
| 50 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
| 51 |
50 50
|
oveq12i |
⊢ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ( ∅ +no ∅ ) |
| 52 |
|
0elon |
⊢ ∅ ∈ On |
| 53 |
|
naddrid |
⊢ ( ∅ ∈ On → ( ∅ +no ∅ ) = ∅ ) |
| 54 |
52 53
|
ax-mp |
⊢ ( ∅ +no ∅ ) = ∅ |
| 55 |
51 54
|
eqtri |
⊢ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ∅ |
| 56 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ) |
| 57 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) |
| 58 |
56 57
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) |
| 59 |
|
oldbdayim |
⊢ ( 𝑊 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ) |
| 60 |
24 59
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ) |
| 61 |
|
bdayelon |
⊢ ( bday ‘ 𝑊 ) ∈ On |
| 62 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
| 63 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 64 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑊 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 65 |
61 62 63 64
|
mp3an |
⊢ ( ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 66 |
60 65
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 67 |
|
oldbdayim |
⊢ ( 𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ) |
| 68 |
14 67
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ) |
| 69 |
|
oldbdayim |
⊢ ( 𝑆 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) |
| 70 |
17 69
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) |
| 71 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 72 |
63 62 71
|
mp2an |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 73 |
68 70 72
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 74 |
66 73
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 75 |
|
bdayelon |
⊢ ( bday ‘ 𝑆 ) ∈ On |
| 76 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑆 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 77 |
75 62 63 76
|
mp3an |
⊢ ( ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 78 |
70 77
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 79 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 80 |
63 62 79
|
mp2an |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 81 |
68 60 80
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 82 |
78 81
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 83 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝑊 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ On ) |
| 84 |
63 61 83
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ On |
| 85 |
|
bdayelon |
⊢ ( bday ‘ 𝑅 ) ∈ On |
| 86 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝑆 ) ∈ On ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On ) |
| 87 |
85 75 86
|
mp2an |
⊢ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On |
| 88 |
84 87
|
onun2i |
⊢ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On |
| 89 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝑆 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On ) |
| 90 |
63 75 89
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On |
| 91 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝑊 ) ∈ On ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ On ) |
| 92 |
85 61 91
|
mp2an |
⊢ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ On |
| 93 |
90 92
|
onun2i |
⊢ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ On |
| 94 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
| 95 |
63 62 94
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
| 96 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 97 |
88 93 95 96
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 98 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 99 |
84 87 95 98
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 100 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 101 |
90 92 95 100
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 102 |
99 101
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 103 |
97 102
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 104 |
74 82 103
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 105 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 107 |
58 106
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 108 |
1 45 45 2 9 47 49 107
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝑅 ∧ 𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) ) |
| 109 |
108
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 <s 𝑅 ∧ 𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) |
| 110 |
40 43 109
|
mp2and |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ) |
| 111 |
18 20 25 27
|
sltsubsubbd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) |
| 112 |
18 20
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
| 113 |
25 27
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No ) |
| 114 |
112 113 15
|
sltadd2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) ) |
| 115 |
111 114
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) ) |
| 116 |
110 115
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) |
| 117 |
15 18 20
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) ) |
| 118 |
15 25 27
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) |
| 119 |
116 117 118
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) ) |
| 121 |
|
ssltleft |
⊢ ( 𝐵 ∈ No → ( L ‘ 𝐵 ) <<s { 𝐵 } ) |
| 122 |
3 121
|
syl |
⊢ ( 𝜑 → ( L ‘ 𝐵 ) <<s { 𝐵 } ) |
| 123 |
|
snidg |
⊢ ( 𝐵 ∈ No → 𝐵 ∈ { 𝐵 } ) |
| 124 |
3 123
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 } ) |
| 125 |
122 7 124
|
ssltsepcd |
⊢ ( 𝜑 → 𝑊 <s 𝐵 ) |
| 126 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) |
| 127 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) |
| 128 |
126 127
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) |
| 129 |
|
oldbdayim |
⊢ ( 𝑉 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ) |
| 130 |
30 129
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ) |
| 131 |
|
bdayelon |
⊢ ( bday ‘ 𝑉 ) ∈ On |
| 132 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑉 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 133 |
131 63 62 132
|
mp3an |
⊢ ( ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 134 |
130 133
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 135 |
81 134
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 136 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 137 |
85 63 62 136
|
mp3an |
⊢ ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 138 |
68 137
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 139 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 140 |
63 62 139
|
mp2an |
⊢ ( ( ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑊 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 141 |
130 60 140
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 142 |
138 141
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 143 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑉 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
| 144 |
131 62 143
|
mp2an |
⊢ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
| 145 |
92 144
|
onun2i |
⊢ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On |
| 146 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
| 147 |
85 62 146
|
mp2an |
⊢ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
| 148 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑉 ) ∈ On ∧ ( bday ‘ 𝑊 ) ∈ On ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ On ) |
| 149 |
131 61 148
|
mp2an |
⊢ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ On |
| 150 |
147 149
|
onun2i |
⊢ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ On |
| 151 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 152 |
145 150 95 151
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 153 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ On ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 154 |
92 144 95 153
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 155 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 156 |
147 149 95 155
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 157 |
154 156
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 158 |
152 157
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 159 |
135 142 158
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 160 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 161 |
159 160
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 162 |
128 161
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ) ∪ ( ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 163 |
1 45 45 9 10 47 3 162
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑅 <s 𝑉 ∧ 𝑊 <s 𝐵 ) → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) ) |
| 164 |
163
|
simprd |
⊢ ( 𝜑 → ( ( 𝑅 <s 𝑉 ∧ 𝑊 <s 𝐵 ) → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 165 |
125 164
|
mpan2d |
⊢ ( 𝜑 → ( 𝑅 <s 𝑉 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 166 |
165
|
imp |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 167 |
15 27
|
subscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No ) |
| 168 |
31 33
|
subscld |
⊢ ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No ) |
| 169 |
167 168 25
|
sltadd1d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) ) |
| 170 |
169
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) ) |
| 171 |
166 170
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) |
| 172 |
15 25 27
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) |
| 174 |
31 25 33
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) |
| 176 |
171 173 175
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 177 |
22 29 35 120 176
|
slttrd |
⊢ ( ( 𝜑 ∧ 𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 178 |
177
|
ex |
⊢ ( 𝜑 → ( 𝑅 <s 𝑉 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 179 |
37 39 6
|
ssltsepcd |
⊢ ( 𝜑 → 𝐴 <s 𝑉 ) |
| 180 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) |
| 181 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) |
| 182 |
180 181
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) = ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) |
| 183 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 184 |
63 62 183
|
mp2an |
⊢ ( ( ( bday ‘ 𝑉 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 185 |
130 70 184
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 186 |
66 185
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 187 |
78 141
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 188 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑉 ) ∈ On ∧ ( bday ‘ 𝑆 ) ∈ On ) → ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ On ) |
| 189 |
131 75 188
|
mp2an |
⊢ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ On |
| 190 |
84 189
|
onun2i |
⊢ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On |
| 191 |
90 149
|
onun2i |
⊢ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ On |
| 192 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 193 |
190 191 95 192
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 194 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ On ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 195 |
84 189 95 194
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 196 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 197 |
90 149 95 196
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 198 |
195 197
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 199 |
193 198
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 200 |
186 187 199
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 201 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 202 |
200 201
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 203 |
182 202
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑊 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑊 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 204 |
1 45 45 2 10 47 49 203
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝑉 ∧ 𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) ) |
| 205 |
204
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 <s 𝑉 ∧ 𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 206 |
179 43 205
|
mp2and |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 207 |
1 30 17
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑉 ·s 𝑆 ) ∈ No ) |
| 208 |
18 207 25 33
|
sltsubsubbd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 209 |
18 207
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No ) |
| 210 |
25 33
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No ) |
| 211 |
209 210 31
|
sltadd2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) <s ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) ) |
| 212 |
208 211
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) <s ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) ) |
| 213 |
206 212
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) <s ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 214 |
31 18 207
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) = ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) ) |
| 215 |
31 25 33
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) = ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 216 |
213 214 215
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 217 |
|
oveq1 |
⊢ ( 𝑅 = 𝑉 → ( 𝑅 ·s 𝐵 ) = ( 𝑉 ·s 𝐵 ) ) |
| 218 |
217
|
oveq1d |
⊢ ( 𝑅 = 𝑉 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) = ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ) |
| 219 |
|
oveq1 |
⊢ ( 𝑅 = 𝑉 → ( 𝑅 ·s 𝑆 ) = ( 𝑉 ·s 𝑆 ) ) |
| 220 |
218 219
|
oveq12d |
⊢ ( 𝑅 = 𝑉 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) ) |
| 221 |
220
|
breq1d |
⊢ ( 𝑅 = 𝑉 → ( ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 222 |
216 221
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑅 = 𝑉 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 223 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
| 224 |
31 18
|
addscld |
⊢ ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No ) |
| 225 |
224 207
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No ) |
| 226 |
225
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No ) |
| 227 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No ) |
| 228 |
|
ssltright |
⊢ ( 𝐵 ∈ No → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
| 229 |
3 228
|
syl |
⊢ ( 𝜑 → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
| 230 |
229 124 5
|
ssltsepcd |
⊢ ( 𝜑 → 𝐵 <s 𝑆 ) |
| 231 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 232 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 233 |
231 232
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 234 |
134 73
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 235 |
185 138
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 236 |
144 87
|
onun2i |
⊢ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On |
| 237 |
189 147
|
onun2i |
⊢ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On |
| 238 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 239 |
236 237 95 238
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 240 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 241 |
144 87 95 240
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 242 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 243 |
189 147 95 242
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 244 |
241 243
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 245 |
239 244
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
| 246 |
234 235 245
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 247 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 248 |
246 247
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 249 |
233 248
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑉 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
| 250 |
1 45 45 10 9 3 49 249
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑉 <s 𝑅 ∧ 𝐵 <s 𝑆 ) → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) ) |
| 251 |
250
|
simprd |
⊢ ( 𝜑 → ( ( 𝑉 <s 𝑅 ∧ 𝐵 <s 𝑆 ) → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) |
| 252 |
230 251
|
mpan2d |
⊢ ( 𝜑 → ( 𝑉 <s 𝑅 → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) |
| 253 |
252
|
imp |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) |
| 254 |
207 31 20 15
|
sltsubsub2bd |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) ) ) |
| 255 |
15 20
|
subscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
| 256 |
31 207
|
subscld |
⊢ ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No ) |
| 257 |
255 256 18
|
sltadd1d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) ) |
| 258 |
254 257
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) ) |
| 259 |
258
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) ) |
| 260 |
253 259
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
| 261 |
15 18 20
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
| 262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
| 263 |
31 18 207
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
| 264 |
263
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
| 265 |
260 262 264
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) ) |
| 266 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 267 |
223 226 227 265 266
|
slttrd |
⊢ ( ( 𝜑 ∧ 𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) |
| 268 |
267
|
ex |
⊢ ( 𝜑 → ( 𝑉 <s 𝑅 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 269 |
178 222 268
|
3jaod |
⊢ ( 𝜑 → ( ( 𝑅 <s 𝑉 ∨ 𝑅 = 𝑉 ∨ 𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) ) |
| 270 |
12 269
|
mpd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) |