| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
|- ( ph -> X e. V ) |
| 2 |
|
neibastop1.2 |
|- ( ph -> F : X --> ( ~P ~P X \ { (/) } ) ) |
| 3 |
|
neibastop1.3 |
|- ( ( ph /\ ( x e. X /\ v e. ( F ` x ) /\ w e. ( F ` x ) ) ) -> ( ( F ` x ) i^i ~P ( v i^i w ) ) =/= (/) ) |
| 4 |
|
neibastop1.4 |
|- J = { o e. ~P X | A. x e. o ( ( F ` x ) i^i ~P o ) =/= (/) } |
| 5 |
|
neibastop1.5 |
|- ( ( ph /\ ( x e. X /\ v e. ( F ` x ) ) ) -> x e. v ) |
| 6 |
|
neibastop1.6 |
|- ( ( ph /\ ( x e. X /\ v e. ( F ` x ) ) ) -> E. t e. ( F ` x ) A. y e. t ( ( F ` y ) i^i ~P v ) =/= (/) ) |
| 7 |
1 2 3 4
|
neibastop1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 8 |
1 2 3 4 5 6
|
neibastop2 |
|- ( ( ph /\ z e. X ) -> ( n e. ( ( nei ` J ) ` { z } ) <-> ( n C_ X /\ ( ( F ` z ) i^i ~P n ) =/= (/) ) ) ) |
| 9 |
|
velpw |
|- ( n e. ~P X <-> n C_ X ) |
| 10 |
9
|
anbi1i |
|- ( ( n e. ~P X /\ ( ( F ` z ) i^i ~P n ) =/= (/) ) <-> ( n C_ X /\ ( ( F ` z ) i^i ~P n ) =/= (/) ) ) |
| 11 |
8 10
|
bitr4di |
|- ( ( ph /\ z e. X ) -> ( n e. ( ( nei ` J ) ` { z } ) <-> ( n e. ~P X /\ ( ( F ` z ) i^i ~P n ) =/= (/) ) ) ) |
| 12 |
11
|
eqabdv |
|- ( ( ph /\ z e. X ) -> ( ( nei ` J ) ` { z } ) = { n | ( n e. ~P X /\ ( ( F ` z ) i^i ~P n ) =/= (/) ) } ) |
| 13 |
|
df-rab |
|- { n e. ~P X | ( ( F ` z ) i^i ~P n ) =/= (/) } = { n | ( n e. ~P X /\ ( ( F ` z ) i^i ~P n ) =/= (/) ) } |
| 14 |
12 13
|
eqtr4di |
|- ( ( ph /\ z e. X ) -> ( ( nei ` J ) ` { z } ) = { n e. ~P X | ( ( F ` z ) i^i ~P n ) =/= (/) } ) |
| 15 |
14
|
ralrimiva |
|- ( ph -> A. z e. X ( ( nei ` J ) ` { z } ) = { n e. ~P X | ( ( F ` z ) i^i ~P n ) =/= (/) } ) |
| 16 |
|
sneq |
|- ( x = z -> { x } = { z } ) |
| 17 |
16
|
fveq2d |
|- ( x = z -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { z } ) ) |
| 18 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 19 |
18
|
ineq1d |
|- ( x = z -> ( ( F ` x ) i^i ~P n ) = ( ( F ` z ) i^i ~P n ) ) |
| 20 |
19
|
neeq1d |
|- ( x = z -> ( ( ( F ` x ) i^i ~P n ) =/= (/) <-> ( ( F ` z ) i^i ~P n ) =/= (/) ) ) |
| 21 |
20
|
rabbidv |
|- ( x = z -> { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } = { n e. ~P X | ( ( F ` z ) i^i ~P n ) =/= (/) } ) |
| 22 |
17 21
|
eqeq12d |
|- ( x = z -> ( ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> ( ( nei ` J ) ` { z } ) = { n e. ~P X | ( ( F ` z ) i^i ~P n ) =/= (/) } ) ) |
| 23 |
22
|
cbvralvw |
|- ( A. x e. X ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> A. z e. X ( ( nei ` J ) ` { z } ) = { n e. ~P X | ( ( F ` z ) i^i ~P n ) =/= (/) } ) |
| 24 |
15 23
|
sylibr |
|- ( ph -> A. x e. X ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) |
| 25 |
|
toponuni |
|- ( j e. ( TopOn ` X ) -> X = U. j ) |
| 26 |
|
eqimss2 |
|- ( X = U. j -> U. j C_ X ) |
| 27 |
25 26
|
syl |
|- ( j e. ( TopOn ` X ) -> U. j C_ X ) |
| 28 |
|
sspwuni |
|- ( j C_ ~P X <-> U. j C_ X ) |
| 29 |
27 28
|
sylibr |
|- ( j e. ( TopOn ` X ) -> j C_ ~P X ) |
| 30 |
29
|
ad2antlr |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> j C_ ~P X ) |
| 31 |
|
sseqin2 |
|- ( j C_ ~P X <-> ( ~P X i^i j ) = j ) |
| 32 |
30 31
|
sylib |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> ( ~P X i^i j ) = j ) |
| 33 |
|
topontop |
|- ( j e. ( TopOn ` X ) -> j e. Top ) |
| 34 |
33
|
ad3antlr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) /\ o e. ~P X ) -> j e. Top ) |
| 35 |
|
eltop2 |
|- ( j e. Top -> ( o e. j <-> A. x e. o E. z e. j ( x e. z /\ z C_ o ) ) ) |
| 36 |
34 35
|
syl |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) /\ o e. ~P X ) -> ( o e. j <-> A. x e. o E. z e. j ( x e. z /\ z C_ o ) ) ) |
| 37 |
|
elpwi |
|- ( o e. ~P X -> o C_ X ) |
| 38 |
|
ssralv |
|- ( o C_ X -> ( A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } -> A. x e. o ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 39 |
37 38
|
syl |
|- ( o e. ~P X -> ( A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } -> A. x e. o ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 40 |
39
|
adantl |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) -> ( A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } -> A. x e. o ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 41 |
|
simprr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) |
| 42 |
41
|
eleq2d |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> ( o e. ( ( nei ` j ) ` { x } ) <-> o e. { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 43 |
33
|
ad3antlr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> j e. Top ) |
| 44 |
25
|
adantl |
|- ( ( ph /\ j e. ( TopOn ` X ) ) -> X = U. j ) |
| 45 |
44
|
sseq2d |
|- ( ( ph /\ j e. ( TopOn ` X ) ) -> ( o C_ X <-> o C_ U. j ) ) |
| 46 |
45
|
biimpa |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o C_ X ) -> o C_ U. j ) |
| 47 |
37 46
|
sylan2 |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) -> o C_ U. j ) |
| 48 |
47
|
sselda |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ x e. o ) -> x e. U. j ) |
| 49 |
48
|
adantrr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> x e. U. j ) |
| 50 |
47
|
adantr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> o C_ U. j ) |
| 51 |
|
eqid |
|- U. j = U. j |
| 52 |
51
|
isneip |
|- ( ( j e. Top /\ x e. U. j ) -> ( o e. ( ( nei ` j ) ` { x } ) <-> ( o C_ U. j /\ E. z e. j ( x e. z /\ z C_ o ) ) ) ) |
| 53 |
52
|
baibd |
|- ( ( ( j e. Top /\ x e. U. j ) /\ o C_ U. j ) -> ( o e. ( ( nei ` j ) ` { x } ) <-> E. z e. j ( x e. z /\ z C_ o ) ) ) |
| 54 |
43 49 50 53
|
syl21anc |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> ( o e. ( ( nei ` j ) ` { x } ) <-> E. z e. j ( x e. z /\ z C_ o ) ) ) |
| 55 |
|
pweq |
|- ( n = o -> ~P n = ~P o ) |
| 56 |
55
|
ineq2d |
|- ( n = o -> ( ( F ` x ) i^i ~P n ) = ( ( F ` x ) i^i ~P o ) ) |
| 57 |
56
|
neeq1d |
|- ( n = o -> ( ( ( F ` x ) i^i ~P n ) =/= (/) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 58 |
57
|
elrab3 |
|- ( o e. ~P X -> ( o e. { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 59 |
58
|
ad2antlr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> ( o e. { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 60 |
42 54 59
|
3bitr3d |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ ( x e. o /\ ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) -> ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 61 |
60
|
expr |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ x e. o ) -> ( ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } -> ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) ) |
| 62 |
61
|
ralimdva |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) -> ( A. x e. o ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } -> A. x e. o ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) ) |
| 63 |
40 62
|
syld |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) -> ( A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } -> A. x e. o ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) ) |
| 64 |
63
|
imp |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ o e. ~P X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> A. x e. o ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 65 |
64
|
an32s |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) /\ o e. ~P X ) -> A. x e. o ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 66 |
|
ralbi |
|- ( A. x e. o ( E. z e. j ( x e. z /\ z C_ o ) <-> ( ( F ` x ) i^i ~P o ) =/= (/) ) -> ( A. x e. o E. z e. j ( x e. z /\ z C_ o ) <-> A. x e. o ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 67 |
65 66
|
syl |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) /\ o e. ~P X ) -> ( A. x e. o E. z e. j ( x e. z /\ z C_ o ) <-> A. x e. o ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 68 |
36 67
|
bitrd |
|- ( ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) /\ o e. ~P X ) -> ( o e. j <-> A. x e. o ( ( F ` x ) i^i ~P o ) =/= (/) ) ) |
| 69 |
68
|
rabbi2dva |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> ( ~P X i^i j ) = { o e. ~P X | A. x e. o ( ( F ` x ) i^i ~P o ) =/= (/) } ) |
| 70 |
69 4
|
eqtr4di |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> ( ~P X i^i j ) = J ) |
| 71 |
32 70
|
eqtr3d |
|- ( ( ( ph /\ j e. ( TopOn ` X ) ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> j = J ) |
| 72 |
71
|
expl |
|- ( ph -> ( ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> j = J ) ) |
| 73 |
72
|
alrimiv |
|- ( ph -> A. j ( ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> j = J ) ) |
| 74 |
|
eleq1 |
|- ( j = J -> ( j e. ( TopOn ` X ) <-> J e. ( TopOn ` X ) ) ) |
| 75 |
|
fveq2 |
|- ( j = J -> ( nei ` j ) = ( nei ` J ) ) |
| 76 |
75
|
fveq1d |
|- ( j = J -> ( ( nei ` j ) ` { x } ) = ( ( nei ` J ) ` { x } ) ) |
| 77 |
76
|
eqeq1d |
|- ( j = J -> ( ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 78 |
77
|
ralbidv |
|- ( j = J -> ( A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> A. x e. X ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 79 |
74 78
|
anbi12d |
|- ( j = J -> ( ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) <-> ( J e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) ) |
| 80 |
79
|
eqeu |
|- ( ( J e. ( TopOn ` X ) /\ ( J e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` J ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) /\ A. j ( ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) -> j = J ) ) -> E! j ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 81 |
7 7 24 73 80
|
syl121anc |
|- ( ph -> E! j ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 82 |
|
df-reu |
|- ( E! j e. ( TopOn ` X ) A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } <-> E! j ( j e. ( TopOn ` X ) /\ A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) ) |
| 83 |
81 82
|
sylibr |
|- ( ph -> E! j e. ( TopOn ` X ) A. x e. X ( ( nei ` j ) ` { x } ) = { n e. ~P X | ( ( F ` x ) i^i ~P n ) =/= (/) } ) |