Metamath Proof Explorer


Theorem neibastop3

Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses neibastop1.1 φ X V
neibastop1.2 φ F : X 𝒫 𝒫 X
neibastop1.3 φ x X v F x w F x F x 𝒫 v w
neibastop1.4 J = o 𝒫 X | x o F x 𝒫 o
neibastop1.5 φ x X v F x x v
neibastop1.6 φ x X v F x t F x y t F y 𝒫 v
Assertion neibastop3 φ ∃! j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n

Proof

Step Hyp Ref Expression
1 neibastop1.1 φ X V
2 neibastop1.2 φ F : X 𝒫 𝒫 X
3 neibastop1.3 φ x X v F x w F x F x 𝒫 v w
4 neibastop1.4 J = o 𝒫 X | x o F x 𝒫 o
5 neibastop1.5 φ x X v F x x v
6 neibastop1.6 φ x X v F x t F x y t F y 𝒫 v
7 1 2 3 4 neibastop1 φ J TopOn X
8 1 2 3 4 5 6 neibastop2 φ z X n nei J z n X F z 𝒫 n
9 velpw n 𝒫 X n X
10 9 anbi1i n 𝒫 X F z 𝒫 n n X F z 𝒫 n
11 8 10 bitr4di φ z X n nei J z n 𝒫 X F z 𝒫 n
12 11 abbi2dv φ z X nei J z = n | n 𝒫 X F z 𝒫 n
13 df-rab n 𝒫 X | F z 𝒫 n = n | n 𝒫 X F z 𝒫 n
14 12 13 eqtr4di φ z X nei J z = n 𝒫 X | F z 𝒫 n
15 14 ralrimiva φ z X nei J z = n 𝒫 X | F z 𝒫 n
16 sneq x = z x = z
17 16 fveq2d x = z nei J x = nei J z
18 fveq2 x = z F x = F z
19 18 ineq1d x = z F x 𝒫 n = F z 𝒫 n
20 19 neeq1d x = z F x 𝒫 n F z 𝒫 n
21 20 rabbidv x = z n 𝒫 X | F x 𝒫 n = n 𝒫 X | F z 𝒫 n
22 17 21 eqeq12d x = z nei J x = n 𝒫 X | F x 𝒫 n nei J z = n 𝒫 X | F z 𝒫 n
23 22 cbvralvw x X nei J x = n 𝒫 X | F x 𝒫 n z X nei J z = n 𝒫 X | F z 𝒫 n
24 15 23 sylibr φ x X nei J x = n 𝒫 X | F x 𝒫 n
25 toponuni j TopOn X X = j
26 eqimss2 X = j j X
27 25 26 syl j TopOn X j X
28 sspwuni j 𝒫 X j X
29 27 28 sylibr j TopOn X j 𝒫 X
30 29 ad2antlr φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n j 𝒫 X
31 sseqin2 j 𝒫 X 𝒫 X j = j
32 30 31 sylib φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n 𝒫 X j = j
33 topontop j TopOn X j Top
34 33 ad3antlr φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n o 𝒫 X j Top
35 eltop2 j Top o j x o z j x z z o
36 34 35 syl φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n o 𝒫 X o j x o z j x z z o
37 elpwi o 𝒫 X o X
38 ssralv o X x X nei j x = n 𝒫 X | F x 𝒫 n x o nei j x = n 𝒫 X | F x 𝒫 n
39 37 38 syl o 𝒫 X x X nei j x = n 𝒫 X | F x 𝒫 n x o nei j x = n 𝒫 X | F x 𝒫 n
40 39 adantl φ j TopOn X o 𝒫 X x X nei j x = n 𝒫 X | F x 𝒫 n x o nei j x = n 𝒫 X | F x 𝒫 n
41 simprr φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n nei j x = n 𝒫 X | F x 𝒫 n
42 41 eleq2d φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n o nei j x o n 𝒫 X | F x 𝒫 n
43 33 ad3antlr φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n j Top
44 25 adantl φ j TopOn X X = j
45 44 sseq2d φ j TopOn X o X o j
46 45 biimpa φ j TopOn X o X o j
47 37 46 sylan2 φ j TopOn X o 𝒫 X o j
48 47 sselda φ j TopOn X o 𝒫 X x o x j
49 48 adantrr φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n x j
50 47 adantr φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n o j
51 eqid j = j
52 51 isneip j Top x j o nei j x o j z j x z z o
53 52 baibd j Top x j o j o nei j x z j x z z o
54 43 49 50 53 syl21anc φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n o nei j x z j x z z o
55 pweq n = o 𝒫 n = 𝒫 o
56 55 ineq2d n = o F x 𝒫 n = F x 𝒫 o
57 56 neeq1d n = o F x 𝒫 n F x 𝒫 o
58 57 elrab3 o 𝒫 X o n 𝒫 X | F x 𝒫 n F x 𝒫 o
59 58 ad2antlr φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n o n 𝒫 X | F x 𝒫 n F x 𝒫 o
60 42 54 59 3bitr3d φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n z j x z z o F x 𝒫 o
61 60 expr φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n z j x z z o F x 𝒫 o
62 61 ralimdva φ j TopOn X o 𝒫 X x o nei j x = n 𝒫 X | F x 𝒫 n x o z j x z z o F x 𝒫 o
63 40 62 syld φ j TopOn X o 𝒫 X x X nei j x = n 𝒫 X | F x 𝒫 n x o z j x z z o F x 𝒫 o
64 63 imp φ j TopOn X o 𝒫 X x X nei j x = n 𝒫 X | F x 𝒫 n x o z j x z z o F x 𝒫 o
65 64 an32s φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n o 𝒫 X x o z j x z z o F x 𝒫 o
66 ralbi x o z j x z z o F x 𝒫 o x o z j x z z o x o F x 𝒫 o
67 65 66 syl φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n o 𝒫 X x o z j x z z o x o F x 𝒫 o
68 36 67 bitrd φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n o 𝒫 X o j x o F x 𝒫 o
69 68 rabbi2dva φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n 𝒫 X j = o 𝒫 X | x o F x 𝒫 o
70 69 4 eqtr4di φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n 𝒫 X j = J
71 32 70 eqtr3d φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n j = J
72 71 expl φ j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n j = J
73 72 alrimiv φ j j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n j = J
74 eleq1 j = J j TopOn X J TopOn X
75 fveq2 j = J nei j = nei J
76 75 fveq1d j = J nei j x = nei J x
77 76 eqeq1d j = J nei j x = n 𝒫 X | F x 𝒫 n nei J x = n 𝒫 X | F x 𝒫 n
78 77 ralbidv j = J x X nei j x = n 𝒫 X | F x 𝒫 n x X nei J x = n 𝒫 X | F x 𝒫 n
79 74 78 anbi12d j = J j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n J TopOn X x X nei J x = n 𝒫 X | F x 𝒫 n
80 79 eqeu J TopOn X J TopOn X x X nei J x = n 𝒫 X | F x 𝒫 n j j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n j = J ∃! j j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n
81 7 7 24 73 80 syl121anc φ ∃! j j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n
82 df-reu ∃! j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n ∃! j j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n
83 81 82 sylibr φ ∃! j TopOn X x X nei j x = n 𝒫 X | F x 𝒫 n