Metamath Proof Explorer


Theorem neibastop3

Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses neibastop1.1 φXV
neibastop1.2 φF:X𝒫𝒫X
neibastop1.3 φxXvFxwFxFx𝒫vw
neibastop1.4 J=o𝒫X|xoFx𝒫o
neibastop1.5 φxXvFxxv
neibastop1.6 φxXvFxtFxytFy𝒫v
Assertion neibastop3 φ∃!jTopOnXxXneijx=n𝒫X|Fx𝒫n

Proof

Step Hyp Ref Expression
1 neibastop1.1 φXV
2 neibastop1.2 φF:X𝒫𝒫X
3 neibastop1.3 φxXvFxwFxFx𝒫vw
4 neibastop1.4 J=o𝒫X|xoFx𝒫o
5 neibastop1.5 φxXvFxxv
6 neibastop1.6 φxXvFxtFxytFy𝒫v
7 1 2 3 4 neibastop1 φJTopOnX
8 1 2 3 4 5 6 neibastop2 φzXnneiJznXFz𝒫n
9 velpw n𝒫XnX
10 9 anbi1i n𝒫XFz𝒫nnXFz𝒫n
11 8 10 bitr4di φzXnneiJzn𝒫XFz𝒫n
12 11 eqabdv φzXneiJz=n|n𝒫XFz𝒫n
13 df-rab n𝒫X|Fz𝒫n=n|n𝒫XFz𝒫n
14 12 13 eqtr4di φzXneiJz=n𝒫X|Fz𝒫n
15 14 ralrimiva φzXneiJz=n𝒫X|Fz𝒫n
16 sneq x=zx=z
17 16 fveq2d x=zneiJx=neiJz
18 fveq2 x=zFx=Fz
19 18 ineq1d x=zFx𝒫n=Fz𝒫n
20 19 neeq1d x=zFx𝒫nFz𝒫n
21 20 rabbidv x=zn𝒫X|Fx𝒫n=n𝒫X|Fz𝒫n
22 17 21 eqeq12d x=zneiJx=n𝒫X|Fx𝒫nneiJz=n𝒫X|Fz𝒫n
23 22 cbvralvw xXneiJx=n𝒫X|Fx𝒫nzXneiJz=n𝒫X|Fz𝒫n
24 15 23 sylibr φxXneiJx=n𝒫X|Fx𝒫n
25 toponuni jTopOnXX=j
26 eqimss2 X=jjX
27 25 26 syl jTopOnXjX
28 sspwuni j𝒫XjX
29 27 28 sylibr jTopOnXj𝒫X
30 29 ad2antlr φjTopOnXxXneijx=n𝒫X|Fx𝒫nj𝒫X
31 sseqin2 j𝒫X𝒫Xj=j
32 30 31 sylib φjTopOnXxXneijx=n𝒫X|Fx𝒫n𝒫Xj=j
33 topontop jTopOnXjTop
34 33 ad3antlr φjTopOnXxXneijx=n𝒫X|Fx𝒫no𝒫XjTop
35 eltop2 jTopojxozjxzzo
36 34 35 syl φjTopOnXxXneijx=n𝒫X|Fx𝒫no𝒫Xojxozjxzzo
37 elpwi o𝒫XoX
38 ssralv oXxXneijx=n𝒫X|Fx𝒫nxoneijx=n𝒫X|Fx𝒫n
39 37 38 syl o𝒫XxXneijx=n𝒫X|Fx𝒫nxoneijx=n𝒫X|Fx𝒫n
40 39 adantl φjTopOnXo𝒫XxXneijx=n𝒫X|Fx𝒫nxoneijx=n𝒫X|Fx𝒫n
41 simprr φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫nneijx=n𝒫X|Fx𝒫n
42 41 eleq2d φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫noneijxon𝒫X|Fx𝒫n
43 33 ad3antlr φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫njTop
44 25 adantl φjTopOnXX=j
45 44 sseq2d φjTopOnXoXoj
46 45 biimpa φjTopOnXoXoj
47 37 46 sylan2 φjTopOnXo𝒫Xoj
48 47 sselda φjTopOnXo𝒫Xxoxj
49 48 adantrr φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫nxj
50 47 adantr φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫noj
51 eqid j=j
52 51 isneip jTopxjoneijxojzjxzzo
53 52 baibd jTopxjojoneijxzjxzzo
54 43 49 50 53 syl21anc φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫noneijxzjxzzo
55 pweq n=o𝒫n=𝒫o
56 55 ineq2d n=oFx𝒫n=Fx𝒫o
57 56 neeq1d n=oFx𝒫nFx𝒫o
58 57 elrab3 o𝒫Xon𝒫X|Fx𝒫nFx𝒫o
59 58 ad2antlr φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫non𝒫X|Fx𝒫nFx𝒫o
60 42 54 59 3bitr3d φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫nzjxzzoFx𝒫o
61 60 expr φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫nzjxzzoFx𝒫o
62 61 ralimdva φjTopOnXo𝒫Xxoneijx=n𝒫X|Fx𝒫nxozjxzzoFx𝒫o
63 40 62 syld φjTopOnXo𝒫XxXneijx=n𝒫X|Fx𝒫nxozjxzzoFx𝒫o
64 63 imp φjTopOnXo𝒫XxXneijx=n𝒫X|Fx𝒫nxozjxzzoFx𝒫o
65 64 an32s φjTopOnXxXneijx=n𝒫X|Fx𝒫no𝒫XxozjxzzoFx𝒫o
66 ralbi xozjxzzoFx𝒫oxozjxzzoxoFx𝒫o
67 65 66 syl φjTopOnXxXneijx=n𝒫X|Fx𝒫no𝒫XxozjxzzoxoFx𝒫o
68 36 67 bitrd φjTopOnXxXneijx=n𝒫X|Fx𝒫no𝒫XojxoFx𝒫o
69 68 rabbi2dva φjTopOnXxXneijx=n𝒫X|Fx𝒫n𝒫Xj=o𝒫X|xoFx𝒫o
70 69 4 eqtr4di φjTopOnXxXneijx=n𝒫X|Fx𝒫n𝒫Xj=J
71 32 70 eqtr3d φjTopOnXxXneijx=n𝒫X|Fx𝒫nj=J
72 71 expl φjTopOnXxXneijx=n𝒫X|Fx𝒫nj=J
73 72 alrimiv φjjTopOnXxXneijx=n𝒫X|Fx𝒫nj=J
74 eleq1 j=JjTopOnXJTopOnX
75 fveq2 j=Jneij=neiJ
76 75 fveq1d j=Jneijx=neiJx
77 76 eqeq1d j=Jneijx=n𝒫X|Fx𝒫nneiJx=n𝒫X|Fx𝒫n
78 77 ralbidv j=JxXneijx=n𝒫X|Fx𝒫nxXneiJx=n𝒫X|Fx𝒫n
79 74 78 anbi12d j=JjTopOnXxXneijx=n𝒫X|Fx𝒫nJTopOnXxXneiJx=n𝒫X|Fx𝒫n
80 79 eqeu JTopOnXJTopOnXxXneiJx=n𝒫X|Fx𝒫njjTopOnXxXneijx=n𝒫X|Fx𝒫nj=J∃!jjTopOnXxXneijx=n𝒫X|Fx𝒫n
81 7 7 24 73 80 syl121anc φ∃!jjTopOnXxXneijx=n𝒫X|Fx𝒫n
82 df-reu ∃!jTopOnXxXneijx=n𝒫X|Fx𝒫n∃!jjTopOnXxXneijx=n𝒫X|Fx𝒫n
83 81 82 sylibr φ∃!jTopOnXxXneijx=n𝒫X|Fx𝒫n