Step |
Hyp |
Ref |
Expression |
1 |
|
neibastop1.1 |
|
2 |
|
neibastop1.2 |
|
3 |
|
neibastop1.3 |
|
4 |
|
neibastop1.4 |
|
5 |
|
neibastop1.5 |
|
6 |
|
neibastop1.6 |
|
7 |
1 2 3 4
|
neibastop1 |
|
8 |
1 2 3 4 5 6
|
neibastop2 |
|
9 |
|
velpw |
|
10 |
9
|
anbi1i |
|
11 |
8 10
|
bitr4di |
|
12 |
11
|
abbi2dv |
|
13 |
|
df-rab |
|
14 |
12 13
|
eqtr4di |
|
15 |
14
|
ralrimiva |
|
16 |
|
sneq |
|
17 |
16
|
fveq2d |
|
18 |
|
fveq2 |
|
19 |
18
|
ineq1d |
|
20 |
19
|
neeq1d |
|
21 |
20
|
rabbidv |
|
22 |
17 21
|
eqeq12d |
|
23 |
22
|
cbvralvw |
|
24 |
15 23
|
sylibr |
|
25 |
|
toponuni |
|
26 |
|
eqimss2 |
|
27 |
25 26
|
syl |
|
28 |
|
sspwuni |
|
29 |
27 28
|
sylibr |
|
30 |
29
|
ad2antlr |
|
31 |
|
sseqin2 |
|
32 |
30 31
|
sylib |
|
33 |
|
topontop |
|
34 |
33
|
ad3antlr |
|
35 |
|
eltop2 |
|
36 |
34 35
|
syl |
|
37 |
|
elpwi |
|
38 |
|
ssralv |
|
39 |
37 38
|
syl |
|
40 |
39
|
adantl |
|
41 |
|
simprr |
|
42 |
41
|
eleq2d |
|
43 |
33
|
ad3antlr |
|
44 |
25
|
adantl |
|
45 |
44
|
sseq2d |
|
46 |
45
|
biimpa |
|
47 |
37 46
|
sylan2 |
|
48 |
47
|
sselda |
|
49 |
48
|
adantrr |
|
50 |
47
|
adantr |
|
51 |
|
eqid |
|
52 |
51
|
isneip |
|
53 |
52
|
baibd |
|
54 |
43 49 50 53
|
syl21anc |
|
55 |
|
pweq |
|
56 |
55
|
ineq2d |
|
57 |
56
|
neeq1d |
|
58 |
57
|
elrab3 |
|
59 |
58
|
ad2antlr |
|
60 |
42 54 59
|
3bitr3d |
|
61 |
60
|
expr |
|
62 |
61
|
ralimdva |
|
63 |
40 62
|
syld |
|
64 |
63
|
imp |
|
65 |
64
|
an32s |
|
66 |
|
ralbi |
|
67 |
65 66
|
syl |
|
68 |
36 67
|
bitrd |
|
69 |
68
|
rabbi2dva |
|
70 |
69 4
|
eqtr4di |
|
71 |
32 70
|
eqtr3d |
|
72 |
71
|
expl |
|
73 |
72
|
alrimiv |
|
74 |
|
eleq1 |
|
75 |
|
fveq2 |
|
76 |
75
|
fveq1d |
|
77 |
76
|
eqeq1d |
|
78 |
77
|
ralbidv |
|
79 |
74 78
|
anbi12d |
|
80 |
79
|
eqeu |
|
81 |
7 7 24 73 80
|
syl121anc |
|
82 |
|
df-reu |
|
83 |
81 82
|
sylibr |
|