| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
|
| 2 |
|
neibastop1.2 |
|
| 3 |
|
neibastop1.3 |
|
| 4 |
|
neibastop1.4 |
|
| 5 |
|
simpr |
|
| 6 |
|
ssrab2 |
|
| 7 |
4 6
|
eqsstri |
|
| 8 |
5 7
|
sstrdi |
|
| 9 |
|
sspwuni |
|
| 10 |
8 9
|
sylib |
|
| 11 |
|
vuniex |
|
| 12 |
11
|
elpw |
|
| 13 |
10 12
|
sylibr |
|
| 14 |
|
eluni2 |
|
| 15 |
|
elssuni |
|
| 16 |
15
|
ad2antrl |
|
| 17 |
16
|
sspwd |
|
| 18 |
|
sslin |
|
| 19 |
17 18
|
syl |
|
| 20 |
5
|
sselda |
|
| 21 |
20
|
adantrr |
|
| 22 |
|
pweq |
|
| 23 |
22
|
ineq2d |
|
| 24 |
23
|
neeq1d |
|
| 25 |
24
|
raleqbi1dv |
|
| 26 |
25 4
|
elrab2 |
|
| 27 |
26
|
simprbi |
|
| 28 |
21 27
|
syl |
|
| 29 |
|
simprr |
|
| 30 |
|
rsp |
|
| 31 |
28 29 30
|
sylc |
|
| 32 |
|
ssn0 |
|
| 33 |
19 31 32
|
syl2anc |
|
| 34 |
33
|
rexlimdvaa |
|
| 35 |
14 34
|
biimtrid |
|
| 36 |
35
|
ralrimiv |
|
| 37 |
|
pweq |
|
| 38 |
37
|
ineq2d |
|
| 39 |
38
|
neeq1d |
|
| 40 |
39
|
raleqbi1dv |
|
| 41 |
40 4
|
elrab2 |
|
| 42 |
13 36 41
|
sylanbrc |
|
| 43 |
42
|
ex |
|
| 44 |
43
|
alrimiv |
|
| 45 |
|
pweq |
|
| 46 |
45
|
ineq2d |
|
| 47 |
46
|
neeq1d |
|
| 48 |
47
|
raleqbi1dv |
|
| 49 |
48 4
|
elrab2 |
|
| 50 |
49 26
|
anbi12i |
|
| 51 |
|
an4 |
|
| 52 |
50 51
|
bitri |
|
| 53 |
|
inss1 |
|
| 54 |
|
elpwi |
|
| 55 |
53 54
|
sstrid |
|
| 56 |
55
|
ad2antrl |
|
| 57 |
56
|
adantrr |
|
| 58 |
|
vex |
|
| 59 |
58
|
inex1 |
|
| 60 |
59
|
elpw |
|
| 61 |
57 60
|
sylibr |
|
| 62 |
|
ssralv |
|
| 63 |
53 62
|
ax-mp |
|
| 64 |
|
inss2 |
|
| 65 |
|
ssralv |
|
| 66 |
64 65
|
ax-mp |
|
| 67 |
63 66
|
anim12i |
|
| 68 |
|
r19.26 |
|
| 69 |
67 68
|
sylibr |
|
| 70 |
|
n0 |
|
| 71 |
|
n0 |
|
| 72 |
70 71
|
anbi12i |
|
| 73 |
|
exdistrv |
|
| 74 |
|
inss2 |
|
| 75 |
|
simprl |
|
| 76 |
74 75
|
sselid |
|
| 77 |
76
|
elpwid |
|
| 78 |
|
inss2 |
|
| 79 |
|
simprr |
|
| 80 |
78 79
|
sselid |
|
| 81 |
80
|
elpwid |
|
| 82 |
|
ss2in |
|
| 83 |
77 81 82
|
syl2anc |
|
| 84 |
83
|
sspwd |
|
| 85 |
|
sslin |
|
| 86 |
84 85
|
syl |
|
| 87 |
|
simplll |
|
| 88 |
56
|
ad2antrr |
|
| 89 |
|
simplr |
|
| 90 |
88 89
|
sseldd |
|
| 91 |
|
inss1 |
|
| 92 |
91 75
|
sselid |
|
| 93 |
|
inss1 |
|
| 94 |
93 79
|
sselid |
|
| 95 |
87 90 92 94 3
|
syl13anc |
|
| 96 |
|
ssn0 |
|
| 97 |
86 95 96
|
syl2anc |
|
| 98 |
97
|
ex |
|
| 99 |
98
|
exlimdvv |
|
| 100 |
73 99
|
biimtrrid |
|
| 101 |
72 100
|
biimtrid |
|
| 102 |
101
|
ralimdva |
|
| 103 |
69 102
|
syl5 |
|
| 104 |
103
|
impr |
|
| 105 |
|
pweq |
|
| 106 |
105
|
ineq2d |
|
| 107 |
106
|
neeq1d |
|
| 108 |
107
|
raleqbi1dv |
|
| 109 |
108 4
|
elrab2 |
|
| 110 |
61 104 109
|
sylanbrc |
|
| 111 |
52 110
|
sylan2b |
|
| 112 |
111
|
ralrimivva |
|
| 113 |
|
sspwuni |
|
| 114 |
7 113
|
mpbi |
|
| 115 |
114
|
a1i |
|
| 116 |
1 115
|
ssexd |
|
| 117 |
|
uniexb |
|
| 118 |
116 117
|
sylibr |
|
| 119 |
|
istopg |
|
| 120 |
118 119
|
syl |
|
| 121 |
44 112 120
|
mpbir2and |
|
| 122 |
|
pwidg |
|
| 123 |
1 122
|
syl |
|
| 124 |
2
|
ffvelcdmda |
|
| 125 |
|
eldifi |
|
| 126 |
|
elpwi |
|
| 127 |
124 125 126
|
3syl |
|
| 128 |
|
dfss2 |
|
| 129 |
127 128
|
sylib |
|
| 130 |
|
eldifsni |
|
| 131 |
124 130
|
syl |
|
| 132 |
129 131
|
eqnetrd |
|
| 133 |
132
|
ralrimiva |
|
| 134 |
|
pweq |
|
| 135 |
134
|
ineq2d |
|
| 136 |
135
|
neeq1d |
|
| 137 |
136
|
raleqbi1dv |
|
| 138 |
137 4
|
elrab2 |
|
| 139 |
123 133 138
|
sylanbrc |
|
| 140 |
|
elssuni |
|
| 141 |
139 140
|
syl |
|
| 142 |
141 115
|
eqssd |
|
| 143 |
|
istopon |
|
| 144 |
121 142 143
|
sylanbrc |
|