| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
|
| 2 |
|
neibastop1.2 |
|
| 3 |
|
neibastop1.3 |
|
| 4 |
|
neibastop1.4 |
|
| 5 |
|
neibastop1.5 |
|
| 6 |
|
neibastop1.6 |
|
| 7 |
|
neibastop2.p |
|
| 8 |
|
neibastop2.n |
|
| 9 |
|
neibastop2.f |
|
| 10 |
|
neibastop2.u |
|
| 11 |
|
neibastop2.g |
|
| 12 |
|
neibastop2.s |
|
| 13 |
|
ssrab2 |
|
| 14 |
12 13
|
eqsstri |
|
| 15 |
|
elpw2g |
|
| 16 |
1 15
|
syl |
|
| 17 |
14 16
|
mpbiri |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
ineq1d |
|
| 20 |
19
|
neeq1d |
|
| 21 |
20
|
rexbidv |
|
| 22 |
21 12
|
elrab2 |
|
| 23 |
|
frfnom |
|
| 24 |
11
|
fneq1i |
|
| 25 |
23 24
|
mpbir |
|
| 26 |
|
fnunirn |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
|
n0 |
|
| 29 |
|
inss1 |
|
| 30 |
29
|
sseli |
|
| 31 |
6
|
anassrs |
|
| 32 |
30 31
|
sylan2 |
|
| 33 |
32
|
adantrl |
|
| 34 |
|
simprl |
|
| 35 |
|
fvssunirn |
|
| 36 |
2
|
frnd |
|
| 37 |
36
|
difss2d |
|
| 38 |
|
sspwuni |
|
| 39 |
37 38
|
sylib |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
35 40
|
sstrid |
|
| 42 |
41
|
sselda |
|
| 43 |
42
|
elpwid |
|
| 44 |
43
|
sselda |
|
| 45 |
44
|
adantrr |
|
| 46 |
|
simprlr |
|
| 47 |
|
rspe |
|
| 48 |
47
|
ad2ant2l |
|
| 49 |
|
eliun |
|
| 50 |
|
pweq |
|
| 51 |
50
|
ineq2d |
|
| 52 |
51
|
eleq2d |
|
| 53 |
52
|
rexbidv |
|
| 54 |
49 53
|
bitrid |
|
| 55 |
54
|
rspcev |
|
| 56 |
46 48 55
|
syl2anc |
|
| 57 |
|
eliun |
|
| 58 |
56 57
|
sylibr |
|
| 59 |
|
simpll |
|
| 60 |
|
simprll |
|
| 61 |
|
fvssunirn |
|
| 62 |
|
fveq2 |
|
| 63 |
11
|
fveq1i |
|
| 64 |
|
snex |
|
| 65 |
|
fr0g |
|
| 66 |
64 65
|
ax-mp |
|
| 67 |
63 66
|
eqtri |
|
| 68 |
62 67
|
eqtrdi |
|
| 69 |
68
|
sseq1d |
|
| 70 |
|
fveq2 |
|
| 71 |
70
|
sseq1d |
|
| 72 |
|
fveq2 |
|
| 73 |
72
|
sseq1d |
|
| 74 |
|
pwidg |
|
| 75 |
9 74
|
syl |
|
| 76 |
75
|
snssd |
|
| 77 |
|
simprl |
|
| 78 |
9
|
adantr |
|
| 79 |
78
|
pwexd |
|
| 80 |
|
inss2 |
|
| 81 |
|
elpwi |
|
| 82 |
81
|
adantl |
|
| 83 |
82
|
sspwd |
|
| 84 |
80 83
|
sstrid |
|
| 85 |
84
|
ralrimivw |
|
| 86 |
|
iunss |
|
| 87 |
85 86
|
sylibr |
|
| 88 |
87
|
ralrimiva |
|
| 89 |
|
ssralv |
|
| 90 |
89
|
adantl |
|
| 91 |
88 90
|
mpan9 |
|
| 92 |
|
iunss |
|
| 93 |
91 92
|
sylibr |
|
| 94 |
79 93
|
ssexd |
|
| 95 |
|
iuneq1 |
|
| 96 |
|
iuneq1 |
|
| 97 |
11 95 96
|
frsucmpt2 |
|
| 98 |
77 94 97
|
syl2anc |
|
| 99 |
98 93
|
eqsstrd |
|
| 100 |
99
|
expr |
|
| 101 |
100
|
expcom |
|
| 102 |
69 71 73 76 101
|
finds2 |
|
| 103 |
|
fvex |
|
| 104 |
103
|
elpw |
|
| 105 |
102 104
|
imbitrrdi |
|
| 106 |
105
|
com12 |
|
| 107 |
106
|
ralrimiv |
|
| 108 |
|
ffnfv |
|
| 109 |
25 108
|
mpbiran |
|
| 110 |
107 109
|
sylibr |
|
| 111 |
110
|
frnd |
|
| 112 |
|
sspwuni |
|
| 113 |
111 112
|
sylib |
|
| 114 |
113
|
ad2antrr |
|
| 115 |
61 114
|
sstrid |
|
| 116 |
59 60 115 98
|
syl12anc |
|
| 117 |
58 116
|
eleqtrrd |
|
| 118 |
|
peano2 |
|
| 119 |
60 118
|
syl |
|
| 120 |
|
fnfvelrn |
|
| 121 |
25 119 120
|
sylancr |
|
| 122 |
|
elunii |
|
| 123 |
117 121 122
|
syl2anc |
|
| 124 |
123
|
ad2antrr |
|
| 125 |
|
simprr |
|
| 126 |
|
pweq |
|
| 127 |
126
|
ineq2d |
|
| 128 |
127
|
neeq1d |
|
| 129 |
128
|
rspcev |
|
| 130 |
124 125 129
|
syl2anc |
|
| 131 |
12
|
reqabi |
|
| 132 |
45 130 131
|
sylanbrc |
|
| 133 |
132
|
expr |
|
| 134 |
133
|
ralimdva |
|
| 135 |
134
|
impr |
|
| 136 |
|
dfss3 |
|
| 137 |
135 136
|
sylibr |
|
| 138 |
|
velpw |
|
| 139 |
137 138
|
sylibr |
|
| 140 |
|
inelcm |
|
| 141 |
34 139 140
|
syl2anc |
|
| 142 |
33 141
|
rexlimddv |
|
| 143 |
142
|
expr |
|
| 144 |
143
|
exlimdv |
|
| 145 |
28 144
|
biimtrid |
|
| 146 |
145
|
rexlimdvaa |
|
| 147 |
27 146
|
biimtrid |
|
| 148 |
147
|
rexlimdv |
|
| 149 |
148
|
expimpd |
|
| 150 |
22 149
|
biimtrid |
|
| 151 |
150
|
ralrimiv |
|
| 152 |
|
pweq |
|
| 153 |
152
|
ineq2d |
|
| 154 |
153
|
neeq1d |
|
| 155 |
154
|
raleqbi1dv |
|
| 156 |
155 4
|
elrab2 |
|
| 157 |
17 151 156
|
sylanbrc |
|
| 158 |
|
snidg |
|
| 159 |
9 158
|
syl |
|
| 160 |
|
peano1 |
|
| 161 |
|
fnfvelrn |
|
| 162 |
25 160 161
|
mp2an |
|
| 163 |
67 162
|
eqeltrri |
|
| 164 |
|
elunii |
|
| 165 |
159 163 164
|
sylancl |
|
| 166 |
|
inelcm |
|
| 167 |
9 75 166
|
syl2anc |
|
| 168 |
|
pweq |
|
| 169 |
168
|
ineq2d |
|
| 170 |
169
|
neeq1d |
|
| 171 |
170
|
rspcev |
|
| 172 |
165 167 171
|
syl2anc |
|
| 173 |
|
fveq2 |
|
| 174 |
173
|
ineq1d |
|
| 175 |
174
|
neeq1d |
|
| 176 |
175
|
rexbidv |
|
| 177 |
176 12
|
elrab2 |
|
| 178 |
7 172 177
|
sylanbrc |
|
| 179 |
|
eluni2 |
|
| 180 |
|
eleq2 |
|
| 181 |
180
|
rexrn |
|
| 182 |
25 181
|
ax-mp |
|
| 183 |
110
|
adantr |
|
| 184 |
183
|
ffvelcdmda |
|
| 185 |
184
|
elpwid |
|
| 186 |
185
|
sselda |
|
| 187 |
186
|
adantrr |
|
| 188 |
187
|
elpwid |
|
| 189 |
10
|
ad3antrrr |
|
| 190 |
188 189
|
sstrd |
|
| 191 |
|
n0 |
|
| 192 |
|
elin |
|
| 193 |
|
simprrr |
|
| 194 |
193
|
elpwid |
|
| 195 |
|
simpllr |
|
| 196 |
5
|
expr |
|
| 197 |
196
|
ralrimiva |
|
| 198 |
197
|
ad3antrrr |
|
| 199 |
|
simprrl |
|
| 200 |
|
fveq2 |
|
| 201 |
200
|
eleq2d |
|
| 202 |
|
elequ1 |
|
| 203 |
201 202
|
imbi12d |
|
| 204 |
203
|
rspcv |
|
| 205 |
195 198 199 204
|
syl3c |
|
| 206 |
194 205
|
sseldd |
|
| 207 |
206
|
expr |
|
| 208 |
192 207
|
biimtrid |
|
| 209 |
208
|
exlimdv |
|
| 210 |
191 209
|
biimtrid |
|
| 211 |
210
|
impr |
|
| 212 |
190 211
|
sseldd |
|
| 213 |
212
|
exp32 |
|
| 214 |
213
|
rexlimdva |
|
| 215 |
182 214
|
biimtrid |
|
| 216 |
179 215
|
biimtrid |
|
| 217 |
216
|
rexlimdv |
|
| 218 |
217
|
3impia |
|
| 219 |
218
|
rabssdv |
|
| 220 |
12 219
|
eqsstrid |
|
| 221 |
|
eleq2 |
|
| 222 |
|
sseq1 |
|
| 223 |
221 222
|
anbi12d |
|
| 224 |
223
|
rspcev |
|
| 225 |
157 178 220 224
|
syl12anc |
|