Metamath Proof Explorer


Theorem neibastop2lem

Description: Lemma for neibastop2 . (Contributed by Jeff Hankins, 12-Sep-2009)

Ref Expression
Hypotheses neibastop1.1 φXV
neibastop1.2 φF:X𝒫𝒫X
neibastop1.3 φxXvFxwFxFx𝒫vw
neibastop1.4 J=o𝒫X|xoFx𝒫o
neibastop1.5 φxXvFxxv
neibastop1.6 φxXvFxtFxytFy𝒫v
neibastop2.p φPX
neibastop2.n φNX
neibastop2.f φUFP
neibastop2.u φUN
neibastop2.g G=recaVzaxXFx𝒫zUω
neibastop2.s S=yX|franGFy𝒫f
Assertion neibastop2lem φuJPuuN

Proof

Step Hyp Ref Expression
1 neibastop1.1 φXV
2 neibastop1.2 φF:X𝒫𝒫X
3 neibastop1.3 φxXvFxwFxFx𝒫vw
4 neibastop1.4 J=o𝒫X|xoFx𝒫o
5 neibastop1.5 φxXvFxxv
6 neibastop1.6 φxXvFxtFxytFy𝒫v
7 neibastop2.p φPX
8 neibastop2.n φNX
9 neibastop2.f φUFP
10 neibastop2.u φUN
11 neibastop2.g G=recaVzaxXFx𝒫zUω
12 neibastop2.s S=yX|franGFy𝒫f
13 ssrab2 yX|franGFy𝒫fX
14 12 13 eqsstri SX
15 elpw2g XVS𝒫XSX
16 1 15 syl φS𝒫XSX
17 14 16 mpbiri φS𝒫X
18 fveq2 y=xFy=Fx
19 18 ineq1d y=xFy𝒫f=Fx𝒫f
20 19 neeq1d y=xFy𝒫fFx𝒫f
21 20 rexbidv y=xfranGFy𝒫ffranGFx𝒫f
22 21 12 elrab2 xSxXfranGFx𝒫f
23 frfnom recaVzaxXFx𝒫zUωFnω
24 11 fneq1i GFnωrecaVzaxXFx𝒫zUωFnω
25 23 24 mpbir GFnω
26 fnunirn GFnωfranGkωfGk
27 25 26 ax-mp franGkωfGk
28 n0 Fx𝒫fvvFx𝒫f
29 inss1 Fx𝒫fFx
30 29 sseli vFx𝒫fvFx
31 6 anassrs φxXvFxtFxytFy𝒫v
32 30 31 sylan2 φxXvFx𝒫ftFxytFy𝒫v
33 32 adantrl φxXkωfGkvFx𝒫ftFxytFy𝒫v
34 simprl φxXkωfGkvFx𝒫ftFxytFy𝒫vtFx
35 fvssunirn FxranF
36 2 frnd φranF𝒫𝒫X
37 36 difss2d φranF𝒫𝒫X
38 sspwuni ranF𝒫𝒫XranF𝒫X
39 37 38 sylib φranF𝒫X
40 39 ad2antrr φxXkωfGkvFx𝒫franF𝒫X
41 35 40 sstrid φxXkωfGkvFx𝒫fFx𝒫X
42 41 sselda φxXkωfGkvFx𝒫ftFxt𝒫X
43 42 elpwid φxXkωfGkvFx𝒫ftFxtX
44 43 sselda φxXkωfGkvFx𝒫ftFxytyX
45 44 adantrr φxXkωfGkvFx𝒫ftFxytFy𝒫vyX
46 simprlr φxXkωfGkvFx𝒫ffGk
47 rspe xXvFx𝒫fxXvFx𝒫f
48 47 ad2ant2l φxXkωfGkvFx𝒫fxXvFx𝒫f
49 eliun vxXFx𝒫zxXvFx𝒫z
50 pweq z=f𝒫z=𝒫f
51 50 ineq2d z=fFx𝒫z=Fx𝒫f
52 51 eleq2d z=fvFx𝒫zvFx𝒫f
53 52 rexbidv z=fxXvFx𝒫zxXvFx𝒫f
54 49 53 bitrid z=fvxXFx𝒫zxXvFx𝒫f
55 54 rspcev fGkxXvFx𝒫fzGkvxXFx𝒫z
56 46 48 55 syl2anc φxXkωfGkvFx𝒫fzGkvxXFx𝒫z
57 eliun vzGkxXFx𝒫zzGkvxXFx𝒫z
58 56 57 sylibr φxXkωfGkvFx𝒫fvzGkxXFx𝒫z
59 simpll φxXkωfGkvFx𝒫fφ
60 simprll φxXkωfGkvFx𝒫fkω
61 fvssunirn GkranG
62 fveq2 n=Gn=G
63 11 fveq1i G=recaVzaxXFx𝒫zUω
64 snex UV
65 fr0g UVrecaVzaxXFx𝒫zUω=U
66 64 65 ax-mp recaVzaxXFx𝒫zUω=U
67 63 66 eqtri G=U
68 62 67 eqtrdi n=Gn=U
69 68 sseq1d n=Gn𝒫UU𝒫U
70 fveq2 n=kGn=Gk
71 70 sseq1d n=kGn𝒫UGk𝒫U
72 fveq2 n=suckGn=Gsuck
73 72 sseq1d n=suckGn𝒫UGsuck𝒫U
74 pwidg UFPU𝒫U
75 9 74 syl φU𝒫U
76 75 snssd φU𝒫U
77 simprl φkωGk𝒫Ukω
78 9 adantr φkωGk𝒫UUFP
79 78 pwexd φkωGk𝒫U𝒫UV
80 inss2 Fx𝒫z𝒫z
81 elpwi z𝒫UzU
82 81 adantl φz𝒫UzU
83 82 sspwd φz𝒫U𝒫z𝒫U
84 80 83 sstrid φz𝒫UFx𝒫z𝒫U
85 84 ralrimivw φz𝒫UxXFx𝒫z𝒫U
86 iunss xXFx𝒫z𝒫UxXFx𝒫z𝒫U
87 85 86 sylibr φz𝒫UxXFx𝒫z𝒫U
88 87 ralrimiva φz𝒫UxXFx𝒫z𝒫U
89 ssralv Gk𝒫Uz𝒫UxXFx𝒫z𝒫UzGkxXFx𝒫z𝒫U
90 89 adantl kωGk𝒫Uz𝒫UxXFx𝒫z𝒫UzGkxXFx𝒫z𝒫U
91 88 90 mpan9 φkωGk𝒫UzGkxXFx𝒫z𝒫U
92 iunss zGkxXFx𝒫z𝒫UzGkxXFx𝒫z𝒫U
93 91 92 sylibr φkωGk𝒫UzGkxXFx𝒫z𝒫U
94 79 93 ssexd φkωGk𝒫UzGkxXFx𝒫zV
95 iuneq1 y=azyxXFx𝒫z=zaxXFx𝒫z
96 iuneq1 y=GkzyxXFx𝒫z=zGkxXFx𝒫z
97 11 95 96 frsucmpt2 kωzGkxXFx𝒫zVGsuck=zGkxXFx𝒫z
98 77 94 97 syl2anc φkωGk𝒫UGsuck=zGkxXFx𝒫z
99 98 93 eqsstrd φkωGk𝒫UGsuck𝒫U
100 99 expr φkωGk𝒫UGsuck𝒫U
101 100 expcom kωφGk𝒫UGsuck𝒫U
102 69 71 73 76 101 finds2 nωφGn𝒫U
103 fvex GnV
104 103 elpw Gn𝒫𝒫UGn𝒫U
105 102 104 syl6ibr nωφGn𝒫𝒫U
106 105 com12 φnωGn𝒫𝒫U
107 106 ralrimiv φnωGn𝒫𝒫U
108 ffnfv G:ω𝒫𝒫UGFnωnωGn𝒫𝒫U
109 25 108 mpbiran G:ω𝒫𝒫UnωGn𝒫𝒫U
110 107 109 sylibr φG:ω𝒫𝒫U
111 110 frnd φranG𝒫𝒫U
112 sspwuni ranG𝒫𝒫UranG𝒫U
113 111 112 sylib φranG𝒫U
114 113 ad2antrr φxXkωfGkvFx𝒫franG𝒫U
115 61 114 sstrid φxXkωfGkvFx𝒫fGk𝒫U
116 59 60 115 98 syl12anc φxXkωfGkvFx𝒫fGsuck=zGkxXFx𝒫z
117 58 116 eleqtrrd φxXkωfGkvFx𝒫fvGsuck
118 peano2 kωsuckω
119 60 118 syl φxXkωfGkvFx𝒫fsuckω
120 fnfvelrn GFnωsuckωGsuckranG
121 25 119 120 sylancr φxXkωfGkvFx𝒫fGsuckranG
122 elunii vGsuckGsuckranGvranG
123 117 121 122 syl2anc φxXkωfGkvFx𝒫fvranG
124 123 ad2antrr φxXkωfGkvFx𝒫ftFxytFy𝒫vvranG
125 simprr φxXkωfGkvFx𝒫ftFxytFy𝒫vFy𝒫v
126 pweq f=v𝒫f=𝒫v
127 126 ineq2d f=vFy𝒫f=Fy𝒫v
128 127 neeq1d f=vFy𝒫fFy𝒫v
129 128 rspcev vranGFy𝒫vfranGFy𝒫f
130 124 125 129 syl2anc φxXkωfGkvFx𝒫ftFxytFy𝒫vfranGFy𝒫f
131 12 reqabi ySyXfranGFy𝒫f
132 45 130 131 sylanbrc φxXkωfGkvFx𝒫ftFxytFy𝒫vyS
133 132 expr φxXkωfGkvFx𝒫ftFxytFy𝒫vyS
134 133 ralimdva φxXkωfGkvFx𝒫ftFxytFy𝒫vytyS
135 134 impr φxXkωfGkvFx𝒫ftFxytFy𝒫vytyS
136 dfss3 tSytyS
137 135 136 sylibr φxXkωfGkvFx𝒫ftFxytFy𝒫vtS
138 velpw t𝒫StS
139 137 138 sylibr φxXkωfGkvFx𝒫ftFxytFy𝒫vt𝒫S
140 inelcm tFxt𝒫SFx𝒫S
141 34 139 140 syl2anc φxXkωfGkvFx𝒫ftFxytFy𝒫vFx𝒫S
142 33 141 rexlimddv φxXkωfGkvFx𝒫fFx𝒫S
143 142 expr φxXkωfGkvFx𝒫fFx𝒫S
144 143 exlimdv φxXkωfGkvvFx𝒫fFx𝒫S
145 28 144 biimtrid φxXkωfGkFx𝒫fFx𝒫S
146 145 rexlimdvaa φxXkωfGkFx𝒫fFx𝒫S
147 27 146 biimtrid φxXfranGFx𝒫fFx𝒫S
148 147 rexlimdv φxXfranGFx𝒫fFx𝒫S
149 148 expimpd φxXfranGFx𝒫fFx𝒫S
150 22 149 biimtrid φxSFx𝒫S
151 150 ralrimiv φxSFx𝒫S
152 pweq o=S𝒫o=𝒫S
153 152 ineq2d o=SFx𝒫o=Fx𝒫S
154 153 neeq1d o=SFx𝒫oFx𝒫S
155 154 raleqbi1dv o=SxoFx𝒫oxSFx𝒫S
156 155 4 elrab2 SJS𝒫XxSFx𝒫S
157 17 151 156 sylanbrc φSJ
158 snidg UFPUU
159 9 158 syl φUU
160 peano1 ω
161 fnfvelrn GFnωωGranG
162 25 160 161 mp2an GranG
163 67 162 eqeltrri UranG
164 elunii UUUranGUranG
165 159 163 164 sylancl φUranG
166 inelcm UFPU𝒫UFP𝒫U
167 9 75 166 syl2anc φFP𝒫U
168 pweq f=U𝒫f=𝒫U
169 168 ineq2d f=UFP𝒫f=FP𝒫U
170 169 neeq1d f=UFP𝒫fFP𝒫U
171 170 rspcev UranGFP𝒫UfranGFP𝒫f
172 165 167 171 syl2anc φfranGFP𝒫f
173 fveq2 y=PFy=FP
174 173 ineq1d y=PFy𝒫f=FP𝒫f
175 174 neeq1d y=PFy𝒫fFP𝒫f
176 175 rexbidv y=PfranGFy𝒫ffranGFP𝒫f
177 176 12 elrab2 PSPXfranGFP𝒫f
178 7 172 177 sylanbrc φPS
179 eluni2 franGzranGfz
180 eleq2 z=GkfzfGk
181 180 rexrn GFnωzranGfzkωfGk
182 25 181 ax-mp zranGfzkωfGk
183 110 adantr φyXG:ω𝒫𝒫U
184 183 ffvelcdmda φyXkωGk𝒫𝒫U
185 184 elpwid φyXkωGk𝒫U
186 185 sselda φyXkωfGkf𝒫U
187 186 adantrr φyXkωfGkFy𝒫ff𝒫U
188 187 elpwid φyXkωfGkFy𝒫ffU
189 10 ad3antrrr φyXkωfGkFy𝒫fUN
190 188 189 sstrd φyXkωfGkFy𝒫ffN
191 n0 Fy𝒫fvvFy𝒫f
192 elin vFy𝒫fvFyv𝒫f
193 simprrr φyXkωfGkvFyv𝒫fv𝒫f
194 193 elpwid φyXkωfGkvFyv𝒫fvf
195 simpllr φyXkωfGkvFyv𝒫fyX
196 5 expr φxXvFxxv
197 196 ralrimiva φxXvFxxv
198 197 ad3antrrr φyXkωfGkvFyv𝒫fxXvFxxv
199 simprrl φyXkωfGkvFyv𝒫fvFy
200 fveq2 x=yFx=Fy
201 200 eleq2d x=yvFxvFy
202 elequ1 x=yxvyv
203 201 202 imbi12d x=yvFxxvvFyyv
204 203 rspcv yXxXvFxxvvFyyv
205 195 198 199 204 syl3c φyXkωfGkvFyv𝒫fyv
206 194 205 sseldd φyXkωfGkvFyv𝒫fyf
207 206 expr φyXkωfGkvFyv𝒫fyf
208 192 207 biimtrid φyXkωfGkvFy𝒫fyf
209 208 exlimdv φyXkωfGkvvFy𝒫fyf
210 191 209 biimtrid φyXkωfGkFy𝒫fyf
211 210 impr φyXkωfGkFy𝒫fyf
212 190 211 sseldd φyXkωfGkFy𝒫fyN
213 212 exp32 φyXkωfGkFy𝒫fyN
214 213 rexlimdva φyXkωfGkFy𝒫fyN
215 182 214 biimtrid φyXzranGfzFy𝒫fyN
216 179 215 biimtrid φyXfranGFy𝒫fyN
217 216 rexlimdv φyXfranGFy𝒫fyN
218 217 3impia φyXfranGFy𝒫fyN
219 218 rabssdv φyX|franGFy𝒫fN
220 12 219 eqsstrid φSN
221 eleq2 u=SPuPS
222 sseq1 u=SuNSN
223 221 222 anbi12d u=SPuuNPSSN
224 223 rspcev SJPSSNuJPuuN
225 157 178 220 224 syl12anc φuJPuuN