| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
|
| 2 |
|
neibastop1.2 |
|
| 3 |
|
neibastop1.3 |
|
| 4 |
|
neibastop1.4 |
|
| 5 |
|
neibastop1.5 |
|
| 6 |
|
neibastop1.6 |
|
| 7 |
1 2 3 4
|
neibastop1 |
|
| 8 |
|
topontop |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
eqid |
|
| 12 |
11
|
neii1 |
|
| 13 |
10 12
|
sylan |
|
| 14 |
|
toponuni |
|
| 15 |
7 14
|
syl |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
13 16
|
sseqtrrd |
|
| 18 |
|
neii2 |
|
| 19 |
10 18
|
sylan |
|
| 20 |
|
pweq |
|
| 21 |
20
|
ineq2d |
|
| 22 |
21
|
neeq1d |
|
| 23 |
22
|
raleqbi1dv |
|
| 24 |
23 4
|
elrab2 |
|
| 25 |
|
simprrr |
|
| 26 |
25
|
sspwd |
|
| 27 |
|
sslin |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
simprrl |
|
| 30 |
|
snssg |
|
| 31 |
30
|
ad3antlr |
|
| 32 |
29 31
|
mpbird |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
ineq1d |
|
| 35 |
34
|
neeq1d |
|
| 36 |
35
|
rspcv |
|
| 37 |
32 36
|
syl |
|
| 38 |
|
ssn0 |
|
| 39 |
28 37 38
|
syl6an |
|
| 40 |
39
|
expr |
|
| 41 |
40
|
com23 |
|
| 42 |
41
|
expimpd |
|
| 43 |
24 42
|
biimtrid |
|
| 44 |
43
|
rexlimdv |
|
| 45 |
19 44
|
mpd |
|
| 46 |
17 45
|
jca |
|
| 47 |
46
|
ex |
|
| 48 |
|
n0 |
|
| 49 |
|
elin |
|
| 50 |
|
simprl |
|
| 51 |
15
|
ad2antrr |
|
| 52 |
50 51
|
sseqtrd |
|
| 53 |
1
|
ad2antrr |
|
| 54 |
2
|
ad2antrr |
|
| 55 |
|
simpll |
|
| 56 |
55 3
|
sylan |
|
| 57 |
55 5
|
sylan |
|
| 58 |
55 6
|
sylan |
|
| 59 |
|
simplr |
|
| 60 |
|
simprrl |
|
| 61 |
|
simprrr |
|
| 62 |
61
|
elpwid |
|
| 63 |
|
fveq2 |
|
| 64 |
63
|
ineq1d |
|
| 65 |
64
|
cbviunv |
|
| 66 |
|
pweq |
|
| 67 |
66
|
ineq2d |
|
| 68 |
67
|
iuneq2d |
|
| 69 |
65 68
|
eqtrid |
|
| 70 |
69
|
cbviunv |
|
| 71 |
70
|
mpteq2i |
|
| 72 |
|
rdgeq1 |
|
| 73 |
71 72
|
ax-mp |
|
| 74 |
73
|
reseq1i |
|
| 75 |
|
pweq |
|
| 76 |
75
|
ineq2d |
|
| 77 |
76
|
neeq1d |
|
| 78 |
77
|
cbvrexvw |
|
| 79 |
|
fveq2 |
|
| 80 |
79
|
ineq1d |
|
| 81 |
80
|
neeq1d |
|
| 82 |
81
|
rexbidv |
|
| 83 |
78 82
|
bitrid |
|
| 84 |
83
|
cbvrabv |
|
| 85 |
53 54 56 4 57 58 59 50 60 62 74 84
|
neibastop2lem |
|
| 86 |
9
|
ad2antrr |
|
| 87 |
59 51
|
eleqtrd |
|
| 88 |
11
|
isneip |
|
| 89 |
86 87 88
|
syl2anc |
|
| 90 |
52 85 89
|
mpbir2and |
|
| 91 |
90
|
expr |
|
| 92 |
49 91
|
biimtrid |
|
| 93 |
92
|
exlimdv |
|
| 94 |
48 93
|
biimtrid |
|
| 95 |
94
|
expimpd |
|
| 96 |
47 95
|
impbid |
|