Step |
Hyp |
Ref |
Expression |
1 |
|
neibastop1.1 |
|
2 |
|
neibastop1.2 |
|
3 |
|
neibastop1.3 |
|
4 |
|
neibastop1.4 |
|
5 |
|
neibastop1.5 |
|
6 |
|
neibastop1.6 |
|
7 |
1 2 3 4
|
neibastop1 |
|
8 |
|
topontop |
|
9 |
7 8
|
syl |
|
10 |
9
|
adantr |
|
11 |
|
eqid |
|
12 |
11
|
neii1 |
|
13 |
10 12
|
sylan |
|
14 |
|
toponuni |
|
15 |
7 14
|
syl |
|
16 |
15
|
ad2antrr |
|
17 |
13 16
|
sseqtrrd |
|
18 |
|
neii2 |
|
19 |
10 18
|
sylan |
|
20 |
|
pweq |
|
21 |
20
|
ineq2d |
|
22 |
21
|
neeq1d |
|
23 |
22
|
raleqbi1dv |
|
24 |
23 4
|
elrab2 |
|
25 |
|
simprrr |
|
26 |
25
|
sspwd |
|
27 |
|
sslin |
|
28 |
26 27
|
syl |
|
29 |
|
simprrl |
|
30 |
|
snssg |
|
31 |
30
|
ad3antlr |
|
32 |
29 31
|
mpbird |
|
33 |
|
fveq2 |
|
34 |
33
|
ineq1d |
|
35 |
34
|
neeq1d |
|
36 |
35
|
rspcv |
|
37 |
32 36
|
syl |
|
38 |
|
ssn0 |
|
39 |
28 37 38
|
syl6an |
|
40 |
39
|
expr |
|
41 |
40
|
com23 |
|
42 |
41
|
expimpd |
|
43 |
24 42
|
syl5bi |
|
44 |
43
|
rexlimdv |
|
45 |
19 44
|
mpd |
|
46 |
17 45
|
jca |
|
47 |
46
|
ex |
|
48 |
|
n0 |
|
49 |
|
elin |
|
50 |
|
simprl |
|
51 |
15
|
ad2antrr |
|
52 |
50 51
|
sseqtrd |
|
53 |
1
|
ad2antrr |
|
54 |
2
|
ad2antrr |
|
55 |
|
simpll |
|
56 |
55 3
|
sylan |
|
57 |
55 5
|
sylan |
|
58 |
55 6
|
sylan |
|
59 |
|
simplr |
|
60 |
|
simprrl |
|
61 |
|
simprrr |
|
62 |
61
|
elpwid |
|
63 |
|
fveq2 |
|
64 |
63
|
ineq1d |
|
65 |
64
|
cbviunv |
|
66 |
|
pweq |
|
67 |
66
|
ineq2d |
|
68 |
67
|
iuneq2d |
|
69 |
65 68
|
eqtrid |
|
70 |
69
|
cbviunv |
|
71 |
70
|
mpteq2i |
|
72 |
|
rdgeq1 |
|
73 |
71 72
|
ax-mp |
|
74 |
73
|
reseq1i |
|
75 |
|
pweq |
|
76 |
75
|
ineq2d |
|
77 |
76
|
neeq1d |
|
78 |
77
|
cbvrexvw |
|
79 |
|
fveq2 |
|
80 |
79
|
ineq1d |
|
81 |
80
|
neeq1d |
|
82 |
81
|
rexbidv |
|
83 |
78 82
|
syl5bb |
|
84 |
83
|
cbvrabv |
|
85 |
53 54 56 4 57 58 59 50 60 62 74 84
|
neibastop2lem |
|
86 |
9
|
ad2antrr |
|
87 |
59 51
|
eleqtrd |
|
88 |
11
|
isneip |
|
89 |
86 87 88
|
syl2anc |
|
90 |
52 85 89
|
mpbir2and |
|
91 |
90
|
expr |
|
92 |
49 91
|
syl5bi |
|
93 |
92
|
exlimdv |
|
94 |
48 93
|
syl5bi |
|
95 |
94
|
expimpd |
|
96 |
47 95
|
impbid |
|