| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neibastop1.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | neibastop1.2 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 𝒫  𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 3 |  | neibastop1.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 )  ∧  𝑤  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ≠  ∅ ) | 
						
							| 4 |  | neibastop1.4 | ⊢ 𝐽  =  { 𝑜  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅ } | 
						
							| 5 |  | neibastop1.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  𝑥  ∈  𝑣 ) | 
						
							| 6 |  | neibastop1.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ∃ 𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 7 | 1 2 3 4 | neibastop1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 8 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 11 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 12 | 11 | neii1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  𝑁  ⊆  ∪  𝐽 ) | 
						
							| 13 | 10 12 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  𝑁  ⊆  ∪  𝐽 ) | 
						
							| 14 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 17 | 13 16 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  𝑁  ⊆  𝑋 ) | 
						
							| 18 |  | neii2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ∃ 𝑦  ∈  𝐽 ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) | 
						
							| 19 | 10 18 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ∃ 𝑦  ∈  𝐽 ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) | 
						
							| 20 |  | pweq | ⊢ ( 𝑜  =  𝑦  →  𝒫  𝑜  =  𝒫  𝑦 ) | 
						
							| 21 | 20 | ineq2d | ⊢ ( 𝑜  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 ) ) | 
						
							| 22 | 21 | neeq1d | ⊢ ( 𝑜  =  𝑦  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 23 | 22 | raleqbi1dv | ⊢ ( 𝑜  =  𝑦  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 24 | 23 4 | elrab2 | ⊢ ( 𝑦  ∈  𝐽  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 25 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  𝑦  ⊆  𝑁 ) | 
						
							| 26 | 25 | sspwd | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  𝒫  𝑦  ⊆  𝒫  𝑁 ) | 
						
							| 27 |  | sslin | ⊢ ( 𝒫  𝑦  ⊆  𝒫  𝑁  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ⊆  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ⊆  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 ) ) | 
						
							| 29 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  { 𝑃 }  ⊆  𝑦 ) | 
						
							| 30 |  | snssg | ⊢ ( 𝑃  ∈  𝑋  →  ( 𝑃  ∈  𝑦  ↔  { 𝑃 }  ⊆  𝑦 ) ) | 
						
							| 31 | 30 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  ( 𝑃  ∈  𝑦  ↔  { 𝑃 }  ⊆  𝑦 ) ) | 
						
							| 32 | 29 31 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  𝑃  ∈  𝑦 ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑥  =  𝑃  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 34 | 33 | ineq1d | ⊢ ( 𝑥  =  𝑃  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  =  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 ) ) | 
						
							| 35 | 34 | neeq1d | ⊢ ( 𝑥  =  𝑃  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 36 | 35 | rspcv | ⊢ ( 𝑃  ∈  𝑦  →  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 37 | 32 36 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 38 |  | ssn0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ⊆  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑦 )  ≠  ∅ )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) | 
						
							| 39 | 28 37 38 | syl6an | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 ) ) )  →  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) | 
						
							| 40 | 39 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 )  →  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) ) | 
						
							| 41 | 40 | com23 | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ( ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) ) | 
						
							| 42 | 41 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( ( 𝑦  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ )  →  ( ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) ) | 
						
							| 43 | 24 42 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( 𝑦  ∈  𝐽  →  ( ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) ) | 
						
							| 44 | 43 | rexlimdv | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( ∃ 𝑦  ∈  𝐽 ( { 𝑃 }  ⊆  𝑦  ∧  𝑦  ⊆  𝑁 )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) | 
						
							| 45 | 19 44 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) | 
						
							| 46 | 17 45 | jca | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( 𝑁  ⊆  𝑋  ∧  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  →  ( 𝑁  ⊆  𝑋  ∧  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) ) | 
						
							| 48 |  | n0 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅  ↔  ∃ 𝑠 𝑠  ∈  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 ) ) | 
						
							| 49 |  | elin | ⊢ ( 𝑠  ∈  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ↔  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) | 
						
							| 50 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑁  ⊆  𝑋 ) | 
						
							| 51 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 52 | 50 51 | sseqtrd | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑁  ⊆  ∪  𝐽 ) | 
						
							| 53 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 54 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝐹 : 𝑋 ⟶ ( 𝒫  𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 55 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝜑 ) | 
						
							| 56 | 55 3 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 )  ∧  𝑤  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ≠  ∅ ) | 
						
							| 57 | 55 5 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  𝑥  ∈  𝑣 ) | 
						
							| 58 | 55 6 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ∃ 𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 59 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 60 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑠  ∈  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 61 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑠  ∈  𝒫  𝑁 ) | 
						
							| 62 | 61 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑠  ⊆  𝑁 ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑛  =  𝑥  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 64 | 63 | ineq1d | ⊢ ( 𝑛  =  𝑥  →  ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑏 ) ) | 
						
							| 65 | 64 | cbviunv | ⊢ ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 )  =  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑏 ) | 
						
							| 66 |  | pweq | ⊢ ( 𝑏  =  𝑧  →  𝒫  𝑏  =  𝒫  𝑧 ) | 
						
							| 67 | 66 | ineq2d | ⊢ ( 𝑏  =  𝑧  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑏 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 68 | 67 | iuneq2d | ⊢ ( 𝑏  =  𝑧  →  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑏 )  =  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 69 | 65 68 | eqtrid | ⊢ ( 𝑏  =  𝑧  →  ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 )  =  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 70 | 69 | cbviunv | ⊢ ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 )  =  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) | 
						
							| 71 | 70 | mpteq2i | ⊢ ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) )  =  ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 72 |  | rdgeq1 | ⊢ ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) )  =  ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) )  →  rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  =  rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑠 } ) ) | 
						
							| 73 | 71 72 | ax-mp | ⊢ rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  =  rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑠 } ) | 
						
							| 74 | 73 | reseq1i | ⊢ ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω )  =  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑠 } )  ↾  ω ) | 
						
							| 75 |  | pweq | ⊢ ( 𝑔  =  𝑓  →  𝒫  𝑔  =  𝒫  𝑓 ) | 
						
							| 76 | 75 | ineq2d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑔 )  =  ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑓 ) ) | 
						
							| 77 | 76 | neeq1d | ⊢ ( 𝑔  =  𝑓  →  ( ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑔 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 78 | 77 | cbvrexvw | ⊢ ( ∃ 𝑔  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑔 )  ≠  ∅  ↔  ∃ 𝑓  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑓 )  ≠  ∅ ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 80 | 79 | ineq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑓 )  =  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 ) ) | 
						
							| 81 | 80 | neeq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 82 | 81 | rexbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑓  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ∃ 𝑓  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 83 | 78 82 | bitrid | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑔  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑔 )  ≠  ∅  ↔  ∃ 𝑓  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 84 | 83 | cbvrabv | ⊢ { 𝑤  ∈  𝑋  ∣  ∃ 𝑔  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑤 )  ∩  𝒫  𝑔 )  ≠  ∅ }  =  { 𝑦  ∈  𝑋  ∣  ∃ 𝑓  ∈  ∪  ran  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑏  ∈  𝑎 ∪  𝑛  ∈  𝑋 ( ( 𝐹 ‘ 𝑛 )  ∩  𝒫  𝑏 ) ) ,  { 𝑠 } )  ↾  ω ) ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ } | 
						
							| 85 | 53 54 56 4 57 58 59 50 60 62 74 84 | neibastop2lem | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  ∧  𝑢  ⊆  𝑁 ) ) | 
						
							| 86 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝐽  ∈  Top ) | 
						
							| 87 | 59 51 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 88 | 11 | isneip | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  ∪  𝐽 )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ↔  ( 𝑁  ⊆  ∪  𝐽  ∧  ∃ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  ∧  𝑢  ⊆  𝑁 ) ) ) ) | 
						
							| 89 | 86 87 88 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ↔  ( 𝑁  ⊆  ∪  𝐽  ∧  ∃ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  ∧  𝑢  ⊆  𝑁 ) ) ) ) | 
						
							| 90 | 52 85 89 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑁  ⊆  𝑋  ∧  ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 ) ) )  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) | 
						
							| 91 | 90 | expr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ⊆  𝑋 )  →  ( ( 𝑠  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑠  ∈  𝒫  𝑁 )  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 92 | 49 91 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ⊆  𝑋 )  →  ( 𝑠  ∈  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 93 | 92 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ⊆  𝑋 )  →  ( ∃ 𝑠 𝑠  ∈  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 94 | 48 93 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  ∧  𝑁  ⊆  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 95 | 94 | expimpd | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝑁  ⊆  𝑋  ∧  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ )  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 96 | 47 95 | impbid | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝑋 )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ↔  ( 𝑁  ⊆  𝑋  ∧  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑁 )  ≠  ∅ ) ) ) |