Step |
Hyp |
Ref |
Expression |
1 |
|
neibastop1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
neibastop1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
3 |
|
neibastop1.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
4 |
|
neibastop1.4 |
⊢ 𝐽 = { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } |
5 |
|
neibastop1.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝑣 ) |
6 |
|
neibastop1.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
7 |
1 2 3 4
|
neibastop1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
8 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
12 |
11
|
neii1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
13 |
10 12
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
14 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
15 |
7 14
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → 𝑋 = ∪ 𝐽 ) |
17 |
13 16
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → 𝑁 ⊆ 𝑋 ) |
18 |
|
neii2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ∃ 𝑦 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) |
19 |
10 18
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ∃ 𝑦 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) |
20 |
|
pweq |
⊢ ( 𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦 ) |
21 |
20
|
ineq2d |
⊢ ( 𝑜 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ) |
22 |
21
|
neeq1d |
⊢ ( 𝑜 = 𝑦 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
23 |
22
|
raleqbi1dv |
⊢ ( 𝑜 = 𝑦 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
24 |
23 4
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐽 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
25 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → 𝑦 ⊆ 𝑁 ) |
26 |
25
|
sspwd |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → 𝒫 𝑦 ⊆ 𝒫 𝑁 ) |
27 |
|
sslin |
⊢ ( 𝒫 𝑦 ⊆ 𝒫 𝑁 → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ) |
28 |
26 27
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ) |
29 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → { 𝑃 } ⊆ 𝑦 ) |
30 |
|
snssg |
⊢ ( 𝑃 ∈ 𝑋 → ( 𝑃 ∈ 𝑦 ↔ { 𝑃 } ⊆ 𝑦 ) ) |
31 |
30
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → ( 𝑃 ∈ 𝑦 ↔ { 𝑃 } ⊆ 𝑦 ) ) |
32 |
29 31
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → 𝑃 ∈ 𝑦 ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑃 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑃 ) ) |
34 |
33
|
ineq1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) = ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ) |
35 |
34
|
neeq1d |
⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
36 |
35
|
rspcv |
⊢ ( 𝑃 ∈ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
37 |
32 36
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
38 |
|
ssn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) |
39 |
28 37 38
|
syl6an |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) → ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) |
40 |
39
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) ) |
41 |
40
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ( ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) ) |
42 |
41
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) → ( ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) ) |
43 |
24 42
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( 𝑦 ∈ 𝐽 → ( ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) ) |
44 |
43
|
rexlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( ∃ 𝑦 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) |
45 |
19 44
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) |
46 |
17 45
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( 𝑁 ⊆ 𝑋 ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) |
47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( 𝑁 ⊆ 𝑋 ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) ) |
48 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ↔ ∃ 𝑠 𝑠 ∈ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ) |
49 |
|
elin |
⊢ ( 𝑠 ∈ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ↔ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) |
50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑁 ⊆ 𝑋 ) |
51 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑋 = ∪ 𝐽 ) |
52 |
50 51
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
53 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑋 ∈ 𝑉 ) |
54 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝐹 : 𝑋 ⟶ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
55 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝜑 ) |
56 |
55 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
57 |
55 5
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝑣 ) |
58 |
55 6
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑃 ∈ 𝑋 ) |
60 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) |
61 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑠 ∈ 𝒫 𝑁 ) |
62 |
61
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑠 ⊆ 𝑁 ) |
63 |
|
fveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑥 ) ) |
64 |
63
|
ineq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑏 ) ) |
65 |
64
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) = ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑏 ) |
66 |
|
pweq |
⊢ ( 𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧 ) |
67 |
66
|
ineq2d |
⊢ ( 𝑏 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑏 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
68 |
67
|
iuneq2d |
⊢ ( 𝑏 = 𝑧 → ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑏 ) = ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
69 |
65 68
|
syl5eq |
⊢ ( 𝑏 = 𝑧 → ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) = ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
70 |
69
|
cbviunv |
⊢ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) = ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) |
71 |
70
|
mpteq2i |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) = ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
72 |
|
rdgeq1 |
⊢ ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) = ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) → rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) = rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑠 } ) ) |
73 |
71 72
|
ax-mp |
⊢ rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) = rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑠 } ) |
74 |
73
|
reseq1i |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑠 } ) ↾ ω ) |
75 |
|
pweq |
⊢ ( 𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓 ) |
76 |
75
|
ineq2d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑔 ) = ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑓 ) ) |
77 |
76
|
neeq1d |
⊢ ( 𝑔 = 𝑓 → ( ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑔 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
78 |
77
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑔 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
79 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
80 |
79
|
ineq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ) |
81 |
80
|
neeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
82 |
81
|
rexbidv |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑓 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
83 |
78 82
|
syl5bb |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑔 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑔 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
84 |
83
|
cbvrabv |
⊢ { 𝑤 ∈ 𝑋 ∣ ∃ 𝑔 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑤 ) ∩ 𝒫 𝑔 ) ≠ ∅ } = { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ( ( 𝐹 ‘ 𝑛 ) ∩ 𝒫 𝑏 ) ) , { 𝑠 } ) ↾ ω ) ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } |
85 |
53 54 56 4 57 58 59 50 60 62 74 84
|
neibastop2lem |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) |
86 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝐽 ∈ Top ) |
87 |
59 51
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑃 ∈ ∪ 𝐽 ) |
88 |
11
|
isneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) ) ) |
89 |
86 87 88
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) ) ) |
90 |
52 85 89
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑁 ⊆ 𝑋 ∧ ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) ) ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
91 |
90
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑠 ∈ 𝒫 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
92 |
49 91
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑠 ∈ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
93 |
92
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( ∃ 𝑠 𝑠 ∈ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
94 |
48 93
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
95 |
94
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑁 ⊆ 𝑋 ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
96 |
47 95
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑁 ) ≠ ∅ ) ) ) |