| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
neibastop1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
| 3 |
|
neibastop1.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
| 4 |
|
neibastop1.4 |
⊢ 𝐽 = { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } |
| 5 |
|
neibastop1.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝑣 ) |
| 6 |
|
neibastop1.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
| 7 |
1 2 3 4
|
neibastop1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 |
1 2 3 4 5 6
|
neibastop2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↔ ( 𝑛 ⊆ 𝑋 ∧ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) ) ) |
| 9 |
|
velpw |
⊢ ( 𝑛 ∈ 𝒫 𝑋 ↔ 𝑛 ⊆ 𝑋 ) |
| 10 |
9
|
anbi1i |
⊢ ( ( 𝑛 ∈ 𝒫 𝑋 ∧ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) ↔ ( 𝑛 ⊆ 𝑋 ∧ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) ) |
| 11 |
8 10
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↔ ( 𝑛 ∈ 𝒫 𝑋 ∧ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) ) ) |
| 12 |
11
|
eqabdv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) = { 𝑛 ∣ ( 𝑛 ∈ 𝒫 𝑋 ∧ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) } ) |
| 13 |
|
df-rab |
⊢ { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ } = { 𝑛 ∣ ( 𝑛 ∈ 𝒫 𝑋 ∧ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) } |
| 14 |
12 13
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |
| 16 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 19 |
18
|
ineq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) = ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ) |
| 20 |
19
|
neeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ ) ) |
| 21 |
20
|
rabbidv |
⊢ ( 𝑥 = 𝑧 → { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |
| 22 |
17 21
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ∀ 𝑧 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |
| 24 |
15 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |
| 25 |
|
toponuni |
⊢ ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑗 ) |
| 26 |
|
eqimss2 |
⊢ ( 𝑋 = ∪ 𝑗 → ∪ 𝑗 ⊆ 𝑋 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝑗 ⊆ 𝑋 ) |
| 28 |
|
sspwuni |
⊢ ( 𝑗 ⊆ 𝒫 𝑋 ↔ ∪ 𝑗 ⊆ 𝑋 ) |
| 29 |
27 28
|
sylibr |
⊢ ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) → 𝑗 ⊆ 𝒫 𝑋 ) |
| 30 |
29
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → 𝑗 ⊆ 𝒫 𝑋 ) |
| 31 |
|
sseqin2 |
⊢ ( 𝑗 ⊆ 𝒫 𝑋 ↔ ( 𝒫 𝑋 ∩ 𝑗 ) = 𝑗 ) |
| 32 |
30 31
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → ( 𝒫 𝑋 ∩ 𝑗 ) = 𝑗 ) |
| 33 |
|
topontop |
⊢ ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) → 𝑗 ∈ Top ) |
| 34 |
33
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → 𝑗 ∈ Top ) |
| 35 |
|
eltop2 |
⊢ ( 𝑗 ∈ Top → ( 𝑜 ∈ 𝑗 ↔ ∀ 𝑥 ∈ 𝑜 ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ( 𝑜 ∈ 𝑗 ↔ ∀ 𝑥 ∈ 𝑜 ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ) ) |
| 37 |
|
elpwi |
⊢ ( 𝑜 ∈ 𝒫 𝑋 → 𝑜 ⊆ 𝑋 ) |
| 38 |
|
ssralv |
⊢ ( 𝑜 ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } → ∀ 𝑥 ∈ 𝑜 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝑜 ∈ 𝒫 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } → ∀ 𝑥 ∈ 𝑜 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } → ∀ 𝑥 ∈ 𝑜 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 41 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |
| 42 |
41
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → ( 𝑜 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↔ 𝑜 ∈ { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 43 |
33
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → 𝑗 ∈ Top ) |
| 44 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) → 𝑋 = ∪ 𝑗 ) |
| 45 |
44
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑜 ⊆ 𝑋 ↔ 𝑜 ⊆ ∪ 𝑗 ) ) |
| 46 |
45
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ⊆ 𝑋 ) → 𝑜 ⊆ ∪ 𝑗 ) |
| 47 |
37 46
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → 𝑜 ⊆ ∪ 𝑗 ) |
| 48 |
47
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑜 ) → 𝑥 ∈ ∪ 𝑗 ) |
| 49 |
48
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → 𝑥 ∈ ∪ 𝑗 ) |
| 50 |
47
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → 𝑜 ⊆ ∪ 𝑗 ) |
| 51 |
|
eqid |
⊢ ∪ 𝑗 = ∪ 𝑗 |
| 52 |
51
|
isneip |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ∪ 𝑗 ) → ( 𝑜 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↔ ( 𝑜 ⊆ ∪ 𝑗 ∧ ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ) ) ) |
| 53 |
52
|
baibd |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑜 ⊆ ∪ 𝑗 ) → ( 𝑜 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↔ ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ) ) |
| 54 |
43 49 50 53
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → ( 𝑜 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↔ ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ) ) |
| 55 |
|
pweq |
⊢ ( 𝑛 = 𝑜 → 𝒫 𝑛 = 𝒫 𝑜 ) |
| 56 |
55
|
ineq2d |
⊢ ( 𝑛 = 𝑜 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ) |
| 57 |
56
|
neeq1d |
⊢ ( 𝑛 = 𝑜 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 58 |
57
|
elrab3 |
⊢ ( 𝑜 ∈ 𝒫 𝑋 → ( 𝑜 ∈ { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 59 |
58
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → ( 𝑜 ∈ { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 60 |
42 54 59
|
3bitr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑜 ∧ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) → ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 61 |
60
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑜 ) → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } → ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) ) |
| 62 |
61
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑜 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } → ∀ 𝑥 ∈ 𝑜 ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) ) |
| 63 |
40 62
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } → ∀ 𝑥 ∈ 𝑜 ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑜 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → ∀ 𝑥 ∈ 𝑜 ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 65 |
64
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑜 ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 66 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ 𝑜 ( ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝑜 ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑜 ∃ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜 ) ↔ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 68 |
36 67
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ∧ 𝑜 ∈ 𝒫 𝑋 ) → ( 𝑜 ∈ 𝑗 ↔ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ) ) |
| 69 |
68
|
rabbi2dva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → ( 𝒫 𝑋 ∩ 𝑗 ) = { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } ) |
| 70 |
69 4
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → ( 𝒫 𝑋 ∩ 𝑗 ) = 𝐽 ) |
| 71 |
32 70
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → 𝑗 = 𝐽 ) |
| 72 |
71
|
expl |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → 𝑗 = 𝐽 ) ) |
| 73 |
72
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑗 ( ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → 𝑗 = 𝐽 ) ) |
| 74 |
|
eleq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) |
| 76 |
75
|
fveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 77 |
76
|
eqeq1d |
⊢ ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 78 |
77
|
ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 79 |
74 78
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ↔ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) ) |
| 80 |
79
|
eqeu |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ∧ ∀ 𝑗 ( ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) → 𝑗 = 𝐽 ) ) → ∃! 𝑗 ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 81 |
7 7 24 73 80
|
syl121anc |
⊢ ( 𝜑 → ∃! 𝑗 ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 82 |
|
df-reu |
⊢ ( ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ↔ ∃! 𝑗 ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) ) |
| 83 |
81 82
|
sylibr |
⊢ ( 𝜑 → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑋 ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = { 𝑛 ∈ 𝒫 𝑋 ∣ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑛 ) ≠ ∅ } ) |