Step |
Hyp |
Ref |
Expression |
1 |
|
neibastop1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
neibastop1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
3 |
|
neibastop1.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
4 |
|
neibastop1.4 |
⊢ 𝐽 = { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → 𝑦 ⊆ 𝐽 ) |
6 |
|
ssrab2 |
⊢ { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } ⊆ 𝒫 𝑋 |
7 |
4 6
|
eqsstri |
⊢ 𝐽 ⊆ 𝒫 𝑋 |
8 |
5 7
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → 𝑦 ⊆ 𝒫 𝑋 ) |
9 |
|
sspwuni |
⊢ ( 𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → ∪ 𝑦 ⊆ 𝑋 ) |
11 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
12 |
11
|
elpw |
⊢ ( ∪ 𝑦 ∈ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) |
13 |
10 12
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → ∪ 𝑦 ∈ 𝒫 𝑋 ) |
14 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑦 ↔ ∃ 𝑧 ∈ 𝑦 𝑥 ∈ 𝑧 ) |
15 |
|
elssuni |
⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦 ) |
16 |
15
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ⊆ ∪ 𝑦 ) |
17 |
16
|
sspwd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → 𝒫 𝑧 ⊆ 𝒫 ∪ 𝑦 ) |
18 |
|
sslin |
⊢ ( 𝒫 𝑧 ⊆ 𝒫 ∪ 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ) |
20 |
5
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝐽 ) |
21 |
20
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) |
22 |
|
pweq |
⊢ ( 𝑜 = 𝑧 → 𝒫 𝑜 = 𝒫 𝑧 ) |
23 |
22
|
ineq2d |
⊢ ( 𝑜 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
24 |
23
|
neeq1d |
⊢ ( 𝑜 = 𝑧 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
25 |
24
|
raleqbi1dv |
⊢ ( 𝑜 = 𝑧 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
26 |
25 4
|
elrab2 |
⊢ ( 𝑧 ∈ 𝐽 ↔ ( 𝑧 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
27 |
26
|
simprbi |
⊢ ( 𝑧 ∈ 𝐽 → ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) |
28 |
21 27
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) |
29 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) |
30 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ → ( 𝑥 ∈ 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
31 |
28 29 30
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) |
32 |
|
ssn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) |
33 |
19 31 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) |
34 |
33
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → ( ∃ 𝑧 ∈ 𝑦 𝑥 ∈ 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) ) |
35 |
14 34
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → ( 𝑥 ∈ ∪ 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → ∀ 𝑥 ∈ ∪ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) |
37 |
|
pweq |
⊢ ( 𝑜 = ∪ 𝑦 → 𝒫 𝑜 = 𝒫 ∪ 𝑦 ) |
38 |
37
|
ineq2d |
⊢ ( 𝑜 = ∪ 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ) |
39 |
38
|
neeq1d |
⊢ ( 𝑜 = ∪ 𝑦 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) ) |
40 |
39
|
raleqbi1dv |
⊢ ( 𝑜 = ∪ 𝑦 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ ∪ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) ) |
41 |
40 4
|
elrab2 |
⊢ ( ∪ 𝑦 ∈ 𝐽 ↔ ( ∪ 𝑦 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ ∪ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ∪ 𝑦 ) ≠ ∅ ) ) |
42 |
13 36 41
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐽 ) → ∪ 𝑦 ∈ 𝐽 ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐽 → ∪ 𝑦 ∈ 𝐽 ) ) |
44 |
43
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( 𝑦 ⊆ 𝐽 → ∪ 𝑦 ∈ 𝐽 ) ) |
45 |
|
pweq |
⊢ ( 𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦 ) |
46 |
45
|
ineq2d |
⊢ ( 𝑜 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ) |
47 |
46
|
neeq1d |
⊢ ( 𝑜 = 𝑦 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
48 |
47
|
raleqbi1dv |
⊢ ( 𝑜 = 𝑦 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
49 |
48 4
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐽 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
50 |
49 26
|
anbi12i |
⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ∧ ( 𝑧 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) |
51 |
|
an4 |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ∧ ( 𝑧 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) |
52 |
50 51
|
bitri |
⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) |
53 |
|
inss1 |
⊢ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑦 |
54 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
55 |
53 54
|
sstrid |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝑋 ) |
56 |
55
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝑋 ) |
57 |
56
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝑋 ) |
58 |
|
vex |
⊢ 𝑦 ∈ V |
59 |
58
|
inex1 |
⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
60 |
59
|
elpw |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝑋 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑋 ) |
61 |
57 60
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝑋 ) |
62 |
|
ssralv |
⊢ ( ( 𝑦 ∩ 𝑧 ) ⊆ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) ) |
63 |
53 62
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ) |
64 |
|
inss2 |
⊢ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑧 |
65 |
|
ssralv |
⊢ ( ( 𝑦 ∩ 𝑧 ) ⊆ 𝑧 → ( ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
66 |
64 65
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) |
67 |
63 66
|
anim12i |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) → ( ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
68 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ↔ ( ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
69 |
67 68
|
sylibr |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) |
70 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ) |
71 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
72 |
70 71
|
anbi12i |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ↔ ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ ∃ 𝑤 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) |
73 |
|
exdistrv |
⊢ ( ∃ 𝑣 ∃ 𝑤 ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ↔ ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ ∃ 𝑤 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) |
74 |
|
inss2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ⊆ 𝒫 𝑦 |
75 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ) |
76 |
74 75
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑣 ∈ 𝒫 𝑦 ) |
77 |
76
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑣 ⊆ 𝑦 ) |
78 |
|
inss2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑧 |
79 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
80 |
78 79
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ 𝒫 𝑧 ) |
81 |
80
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ⊆ 𝑧 ) |
82 |
|
ss2in |
⊢ ( ( 𝑣 ⊆ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑣 ∩ 𝑤 ) ⊆ ( 𝑦 ∩ 𝑧 ) ) |
83 |
77 81 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → ( 𝑣 ∩ 𝑤 ) ⊆ ( 𝑦 ∩ 𝑧 ) ) |
84 |
83
|
sspwd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝒫 ( 𝑣 ∩ 𝑤 ) ⊆ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
85 |
|
sslin |
⊢ ( 𝒫 ( 𝑣 ∩ 𝑤 ) ⊆ 𝒫 ( 𝑦 ∩ 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ) |
86 |
84 85
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ) |
87 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝜑 ) |
88 |
56
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝑋 ) |
89 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) |
90 |
88 89
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑥 ∈ 𝑋 ) |
91 |
|
inss1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) |
92 |
91 75
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) |
93 |
|
inss1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ ( 𝐹 ‘ 𝑥 ) |
94 |
93 79
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) |
95 |
87 90 92 94 3
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
96 |
|
ssn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) |
97 |
86 95 96
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) ∧ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) |
98 |
97
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) → ( ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
99 |
98
|
exlimdvv |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) → ( ∃ 𝑣 ∃ 𝑤 ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
100 |
73 99
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) → ( ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ∧ ∃ 𝑤 𝑤 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
101 |
72 100
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
102 |
101
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) → ( ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
103 |
69 102
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ) → ( ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
104 |
103
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) → ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) |
105 |
|
pweq |
⊢ ( 𝑜 = ( 𝑦 ∩ 𝑧 ) → 𝒫 𝑜 = 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
106 |
105
|
ineq2d |
⊢ ( 𝑜 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ) |
107 |
106
|
neeq1d |
⊢ ( 𝑜 = ( 𝑦 ∩ 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
108 |
107
|
raleqbi1dv |
⊢ ( 𝑜 = ( 𝑦 ∩ 𝑧 ) → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
109 |
108 4
|
elrab2 |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝐽 ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ 𝑧 ) ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) ) |
110 |
61 104 109
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝒫 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑦 ) ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ≠ ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐽 ) |
111 |
52 110
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐽 ) |
112 |
111
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ 𝐽 ( 𝑦 ∩ 𝑧 ) ∈ 𝐽 ) |
113 |
|
sspwuni |
⊢ ( 𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋 ) |
114 |
7 113
|
mpbi |
⊢ ∪ 𝐽 ⊆ 𝑋 |
115 |
114
|
a1i |
⊢ ( 𝜑 → ∪ 𝐽 ⊆ 𝑋 ) |
116 |
1 115
|
ssexd |
⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
117 |
|
uniexb |
⊢ ( 𝐽 ∈ V ↔ ∪ 𝐽 ∈ V ) |
118 |
116 117
|
sylibr |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
119 |
|
istopg |
⊢ ( 𝐽 ∈ V → ( 𝐽 ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ 𝐽 → ∪ 𝑦 ∈ 𝐽 ) ∧ ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ 𝐽 ( 𝑦 ∩ 𝑧 ) ∈ 𝐽 ) ) ) |
120 |
118 119
|
syl |
⊢ ( 𝜑 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ 𝐽 → ∪ 𝑦 ∈ 𝐽 ) ∧ ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ 𝐽 ( 𝑦 ∩ 𝑧 ) ∈ 𝐽 ) ) ) |
121 |
44 112 120
|
mpbir2and |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
122 |
|
pwidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝒫 𝑋 ) |
123 |
1 122
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑋 ) |
124 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
125 |
|
eldifi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝒫 𝑋 ) |
126 |
|
elpwi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝒫 𝑋 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝒫 𝑋 ) |
127 |
124 125 126
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝒫 𝑋 ) |
128 |
|
df-ss |
⊢ ( ( 𝐹 ‘ 𝑥 ) ⊆ 𝒫 𝑋 ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) = ( 𝐹 ‘ 𝑥 ) ) |
129 |
127 128
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) = ( 𝐹 ‘ 𝑥 ) ) |
130 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
131 |
124 130
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
132 |
129 131
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) ≠ ∅ ) |
133 |
132
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) ≠ ∅ ) |
134 |
|
pweq |
⊢ ( 𝑜 = 𝑋 → 𝒫 𝑜 = 𝒫 𝑋 ) |
135 |
134
|
ineq2d |
⊢ ( 𝑜 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) ) |
136 |
135
|
neeq1d |
⊢ ( 𝑜 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) ≠ ∅ ) ) |
137 |
136
|
raleqbi1dv |
⊢ ( 𝑜 = 𝑋 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) ≠ ∅ ) ) |
138 |
137 4
|
elrab2 |
⊢ ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑋 ) ≠ ∅ ) ) |
139 |
123 133 138
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
140 |
|
elssuni |
⊢ ( 𝑋 ∈ 𝐽 → 𝑋 ⊆ ∪ 𝐽 ) |
141 |
139 140
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝐽 ) |
142 |
141 115
|
eqssd |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
143 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
144 |
121 142 143
|
sylanbrc |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |