| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neibastop1.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | neibastop1.2 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 𝒫  𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 3 |  | neibastop1.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 )  ∧  𝑤  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ≠  ∅ ) | 
						
							| 4 |  | neibastop1.4 | ⊢ 𝐽  =  { 𝑜  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅ } | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  𝑦  ⊆  𝐽 ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑜  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅ }  ⊆  𝒫  𝑋 | 
						
							| 7 | 4 6 | eqsstri | ⊢ 𝐽  ⊆  𝒫  𝑋 | 
						
							| 8 | 5 7 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  𝑦  ⊆  𝒫  𝑋 ) | 
						
							| 9 |  | sspwuni | ⊢ ( 𝑦  ⊆  𝒫  𝑋  ↔  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 11 |  | vuniex | ⊢ ∪  𝑦  ∈  V | 
						
							| 12 | 11 | elpw | ⊢ ( ∪  𝑦  ∈  𝒫  𝑋  ↔  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 13 | 10 12 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  ∪  𝑦  ∈  𝒫  𝑋 ) | 
						
							| 14 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  𝑦  ↔  ∃ 𝑧  ∈  𝑦 𝑥  ∈  𝑧 ) | 
						
							| 15 |  | elssuni | ⊢ ( 𝑧  ∈  𝑦  →  𝑧  ⊆  ∪  𝑦 ) | 
						
							| 16 | 15 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  𝑧  ⊆  ∪  𝑦 ) | 
						
							| 17 | 16 | sspwd | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  𝒫  𝑧  ⊆  𝒫  ∪  𝑦 ) | 
						
							| 18 |  | sslin | ⊢ ( 𝒫  𝑧  ⊆  𝒫  ∪  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 ) ) | 
						
							| 20 | 5 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ∈  𝐽 ) | 
						
							| 21 | 20 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  𝑧  ∈  𝐽 ) | 
						
							| 22 |  | pweq | ⊢ ( 𝑜  =  𝑧  →  𝒫  𝑜  =  𝒫  𝑧 ) | 
						
							| 23 | 22 | ineq2d | ⊢ ( 𝑜  =  𝑧  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 24 | 23 | neeq1d | ⊢ ( 𝑜  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 25 | 24 | raleqbi1dv | ⊢ ( 𝑜  =  𝑧  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 26 | 25 4 | elrab2 | ⊢ ( 𝑧  ∈  𝐽  ↔  ( 𝑧  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 27 | 26 | simprbi | ⊢ ( 𝑧  ∈  𝐽  →  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) | 
						
							| 28 | 21 27 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) | 
						
							| 29 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  𝑥  ∈  𝑧 ) | 
						
							| 30 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅  →  ( 𝑥  ∈  𝑧  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 31 | 28 29 30 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) | 
						
							| 32 |  | ssn0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) | 
						
							| 33 | 19 31 32 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑥  ∈  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) | 
						
							| 34 | 33 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  ( ∃ 𝑧  ∈  𝑦 𝑥  ∈  𝑧  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) ) | 
						
							| 35 | 14 34 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  ( 𝑥  ∈  ∪  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) ) | 
						
							| 36 | 35 | ralrimiv | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  ∀ 𝑥  ∈  ∪  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) | 
						
							| 37 |  | pweq | ⊢ ( 𝑜  =  ∪  𝑦  →  𝒫  𝑜  =  𝒫  ∪  𝑦 ) | 
						
							| 38 | 37 | ineq2d | ⊢ ( 𝑜  =  ∪  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 ) ) | 
						
							| 39 | 38 | neeq1d | ⊢ ( 𝑜  =  ∪  𝑦  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) ) | 
						
							| 40 | 39 | raleqbi1dv | ⊢ ( 𝑜  =  ∪  𝑦  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  ∪  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) ) | 
						
							| 41 | 40 4 | elrab2 | ⊢ ( ∪  𝑦  ∈  𝐽  ↔  ( ∪  𝑦  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  ∪  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ∪  𝑦 )  ≠  ∅ ) ) | 
						
							| 42 | 13 36 41 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐽 )  →  ∪  𝑦  ∈  𝐽 ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝜑  →  ( 𝑦  ⊆  𝐽  →  ∪  𝑦  ∈  𝐽 ) ) | 
						
							| 44 | 43 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑦 ( 𝑦  ⊆  𝐽  →  ∪  𝑦  ∈  𝐽 ) ) | 
						
							| 45 |  | pweq | ⊢ ( 𝑜  =  𝑦  →  𝒫  𝑜  =  𝒫  𝑦 ) | 
						
							| 46 | 45 | ineq2d | ⊢ ( 𝑜  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 ) ) | 
						
							| 47 | 46 | neeq1d | ⊢ ( 𝑜  =  𝑦  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 48 | 47 | raleqbi1dv | ⊢ ( 𝑜  =  𝑦  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 49 | 48 4 | elrab2 | ⊢ ( 𝑦  ∈  𝐽  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 50 | 49 26 | anbi12i | ⊢ ( ( 𝑦  ∈  𝐽  ∧  𝑧  ∈  𝐽 )  ↔  ( ( 𝑦  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ )  ∧  ( 𝑧  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) ) | 
						
							| 51 |  | an4 | ⊢ ( ( ( 𝑦  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ )  ∧  ( 𝑧  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) )  ↔  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) ) | 
						
							| 52 | 50 51 | bitri | ⊢ ( ( 𝑦  ∈  𝐽  ∧  𝑧  ∈  𝐽 )  ↔  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) ) | 
						
							| 53 |  | inss1 | ⊢ ( 𝑦  ∩  𝑧 )  ⊆  𝑦 | 
						
							| 54 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  𝑦  ⊆  𝑋 ) | 
						
							| 55 | 53 54 | sstrid | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  ( 𝑦  ∩  𝑧 )  ⊆  𝑋 ) | 
						
							| 56 | 55 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  →  ( 𝑦  ∩  𝑧 )  ⊆  𝑋 ) | 
						
							| 57 | 56 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) )  →  ( 𝑦  ∩  𝑧 )  ⊆  𝑋 ) | 
						
							| 58 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 59 | 58 | inex1 | ⊢ ( 𝑦  ∩  𝑧 )  ∈  V | 
						
							| 60 | 59 | elpw | ⊢ ( ( 𝑦  ∩  𝑧 )  ∈  𝒫  𝑋  ↔  ( 𝑦  ∩  𝑧 )  ⊆  𝑋 ) | 
						
							| 61 | 57 60 | sylibr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) )  →  ( 𝑦  ∩  𝑧 )  ∈  𝒫  𝑋 ) | 
						
							| 62 |  | ssralv | ⊢ ( ( 𝑦  ∩  𝑧 )  ⊆  𝑦  →  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) ) | 
						
							| 63 | 53 62 | ax-mp | ⊢ ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅ ) | 
						
							| 64 |  | inss2 | ⊢ ( 𝑦  ∩  𝑧 )  ⊆  𝑧 | 
						
							| 65 |  | ssralv | ⊢ ( ( 𝑦  ∩  𝑧 )  ⊆  𝑧  →  ( ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ ( ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) | 
						
							| 67 | 63 66 | anim12i | ⊢ ( ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  →  ( ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 68 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  ↔  ( ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 69 | 67 68 | sylibr | ⊢ ( ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) | 
						
							| 70 |  | n0 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ↔  ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 ) ) | 
						
							| 71 |  | n0 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 72 | 70 71 | anbi12i | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  ↔  ( ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  ∃ 𝑤 𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ) | 
						
							| 73 |  | exdistrv | ⊢ ( ∃ 𝑣 ∃ 𝑤 ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) )  ↔  ( ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  ∃ 𝑤 𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ) | 
						
							| 74 |  | inss2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ⊆  𝒫  𝑦 | 
						
							| 75 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 ) ) | 
						
							| 76 | 74 75 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑣  ∈  𝒫  𝑦 ) | 
						
							| 77 | 76 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑣  ⊆  𝑦 ) | 
						
							| 78 |  | inss2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑧 | 
						
							| 79 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 80 | 78 79 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ∈  𝒫  𝑧 ) | 
						
							| 81 | 80 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ⊆  𝑧 ) | 
						
							| 82 |  | ss2in | ⊢ ( ( 𝑣  ⊆  𝑦  ∧  𝑤  ⊆  𝑧 )  →  ( 𝑣  ∩  𝑤 )  ⊆  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 83 | 77 81 82 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  ( 𝑣  ∩  𝑤 )  ⊆  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 84 | 83 | sspwd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝒫  ( 𝑣  ∩  𝑤 )  ⊆  𝒫  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 85 |  | sslin | ⊢ ( 𝒫  ( 𝑣  ∩  𝑤 )  ⊆  𝒫  ( 𝑦  ∩  𝑧 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ⊆  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ⊆  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) ) ) | 
						
							| 87 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝜑 ) | 
						
							| 88 | 56 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  ( 𝑦  ∩  𝑧 )  ⊆  𝑋 ) | 
						
							| 89 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑥  ∈  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 90 | 88 89 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 91 |  | inss1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) | 
						
							| 92 | 91 75 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 93 |  | inss1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  ( 𝐹 ‘ 𝑥 ) | 
						
							| 94 | 93 79 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  𝑤  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 95 | 87 90 92 94 3 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ≠  ∅ ) | 
						
							| 96 |  | ssn0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ⊆  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ≠  ∅ )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) | 
						
							| 97 | 86 95 96 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  ∧  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) | 
						
							| 98 | 97 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  →  ( ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 99 | 98 | exlimdvv | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  →  ( ∃ 𝑣 ∃ 𝑤 ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 100 | 73 99 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  →  ( ( ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ∧  ∃ 𝑤 𝑤  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 101 | 72 100 | biimtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  ∧  𝑥  ∈  ( 𝑦  ∩  𝑧 ) )  →  ( ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 102 | 101 | ralimdva | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  →  ( ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 103 | 69 102 | syl5 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 ) )  →  ( ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ )  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 104 | 103 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) )  →  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) | 
						
							| 105 |  | pweq | ⊢ ( 𝑜  =  ( 𝑦  ∩  𝑧 )  →  𝒫  𝑜  =  𝒫  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 106 | 105 | ineq2d | ⊢ ( 𝑜  =  ( 𝑦  ∩  𝑧 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) ) ) | 
						
							| 107 | 106 | neeq1d | ⊢ ( 𝑜  =  ( 𝑦  ∩  𝑧 )  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 108 | 107 | raleqbi1dv | ⊢ ( 𝑜  =  ( 𝑦  ∩  𝑧 )  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 109 | 108 4 | elrab2 | ⊢ ( ( 𝑦  ∩  𝑧 )  ∈  𝐽  ↔  ( ( 𝑦  ∩  𝑧 )  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  ( 𝑦  ∩  𝑧 ) ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑦  ∩  𝑧 ) )  ≠  ∅ ) ) | 
						
							| 110 | 61 104 109 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝒫  𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑦 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑦 )  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑧 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ≠  ∅ ) ) )  →  ( 𝑦  ∩  𝑧 )  ∈  𝐽 ) | 
						
							| 111 | 52 110 | sylan2b | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐽  ∧  𝑧  ∈  𝐽 ) )  →  ( 𝑦  ∩  𝑧 )  ∈  𝐽 ) | 
						
							| 112 | 111 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐽 ∀ 𝑧  ∈  𝐽 ( 𝑦  ∩  𝑧 )  ∈  𝐽 ) | 
						
							| 113 |  | sspwuni | ⊢ ( 𝐽  ⊆  𝒫  𝑋  ↔  ∪  𝐽  ⊆  𝑋 ) | 
						
							| 114 | 7 113 | mpbi | ⊢ ∪  𝐽  ⊆  𝑋 | 
						
							| 115 | 114 | a1i | ⊢ ( 𝜑  →  ∪  𝐽  ⊆  𝑋 ) | 
						
							| 116 | 1 115 | ssexd | ⊢ ( 𝜑  →  ∪  𝐽  ∈  V ) | 
						
							| 117 |  | uniexb | ⊢ ( 𝐽  ∈  V  ↔  ∪  𝐽  ∈  V ) | 
						
							| 118 | 116 117 | sylibr | ⊢ ( 𝜑  →  𝐽  ∈  V ) | 
						
							| 119 |  | istopg | ⊢ ( 𝐽  ∈  V  →  ( 𝐽  ∈  Top  ↔  ( ∀ 𝑦 ( 𝑦  ⊆  𝐽  →  ∪  𝑦  ∈  𝐽 )  ∧  ∀ 𝑦  ∈  𝐽 ∀ 𝑧  ∈  𝐽 ( 𝑦  ∩  𝑧 )  ∈  𝐽 ) ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( 𝜑  →  ( 𝐽  ∈  Top  ↔  ( ∀ 𝑦 ( 𝑦  ⊆  𝐽  →  ∪  𝑦  ∈  𝐽 )  ∧  ∀ 𝑦  ∈  𝐽 ∀ 𝑧  ∈  𝐽 ( 𝑦  ∩  𝑧 )  ∈  𝐽 ) ) ) | 
						
							| 121 | 44 112 120 | mpbir2and | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 122 |  | pwidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  𝒫  𝑋 ) | 
						
							| 123 | 1 122 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝒫  𝑋 ) | 
						
							| 124 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝒫  𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 125 |  | eldifi | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝒫  𝒫  𝑋  ∖  { ∅ } )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 126 |  | elpwi | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝒫  𝒫  𝑋  →  ( 𝐹 ‘ 𝑥 )  ⊆  𝒫  𝑋 ) | 
						
							| 127 | 124 125 126 | 3syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ⊆  𝒫  𝑋 ) | 
						
							| 128 |  | dfss2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ⊆  𝒫  𝑋  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 129 | 127 128 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 130 |  | eldifsni | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝒫  𝒫  𝑋  ∖  { ∅ } )  →  ( 𝐹 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 131 | 124 130 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 132 | 129 131 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  ≠  ∅ ) | 
						
							| 133 | 132 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  ≠  ∅ ) | 
						
							| 134 |  | pweq | ⊢ ( 𝑜  =  𝑋  →  𝒫  𝑜  =  𝒫  𝑋 ) | 
						
							| 135 | 134 | ineq2d | ⊢ ( 𝑜  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 ) ) | 
						
							| 136 | 135 | neeq1d | ⊢ ( 𝑜  =  𝑋  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  ≠  ∅ ) ) | 
						
							| 137 | 136 | raleqbi1dv | ⊢ ( 𝑜  =  𝑋  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  ≠  ∅ ) ) | 
						
							| 138 | 137 4 | elrab2 | ⊢ ( 𝑋  ∈  𝐽  ↔  ( 𝑋  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑋 )  ≠  ∅ ) ) | 
						
							| 139 | 123 133 138 | sylanbrc | ⊢ ( 𝜑  →  𝑋  ∈  𝐽 ) | 
						
							| 140 |  | elssuni | ⊢ ( 𝑋  ∈  𝐽  →  𝑋  ⊆  ∪  𝐽 ) | 
						
							| 141 | 139 140 | syl | ⊢ ( 𝜑  →  𝑋  ⊆  ∪  𝐽 ) | 
						
							| 142 | 141 115 | eqssd | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 143 |  | istopon | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝐽 ) ) | 
						
							| 144 | 121 142 143 | sylanbrc | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) |