| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neibastop1.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | neibastop1.2 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 𝒫  𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 3 |  | neibastop1.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 )  ∧  𝑤  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  ( 𝑣  ∩  𝑤 ) )  ≠  ∅ ) | 
						
							| 4 |  | neibastop1.4 | ⊢ 𝐽  =  { 𝑜  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅ } | 
						
							| 5 |  | neibastop1.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  𝑥  ∈  𝑣 ) | 
						
							| 6 |  | neibastop1.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) )  →  ∃ 𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 7 |  | neibastop2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝑋 ) | 
						
							| 8 |  | neibastop2.n | ⊢ ( 𝜑  →  𝑁  ⊆  𝑋 ) | 
						
							| 9 |  | neibastop2.f | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 10 |  | neibastop2.u | ⊢ ( 𝜑  →  𝑈  ⊆  𝑁 ) | 
						
							| 11 |  | neibastop2.g | ⊢ 𝐺  =  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑈 } )  ↾  ω ) | 
						
							| 12 |  | neibastop2.s | ⊢ 𝑆  =  { 𝑦  ∈  𝑋  ∣  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ } | 
						
							| 13 |  | ssrab2 | ⊢ { 𝑦  ∈  𝑋  ∣  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ }  ⊆  𝑋 | 
						
							| 14 | 12 13 | eqsstri | ⊢ 𝑆  ⊆  𝑋 | 
						
							| 15 |  | elpw2g | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑆  ∈  𝒫  𝑋  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝒫  𝑋  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 17 | 14 16 | mpbiri | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝑋 ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 | 18 | ineq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) | 
						
							| 20 | 19 | neeq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 21 | 20 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 22 | 21 12 | elrab2 | ⊢ ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  𝑋  ∧  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 23 |  | frfnom | ⊢ ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑈 } )  ↾  ω )  Fn  ω | 
						
							| 24 | 11 | fneq1i | ⊢ ( 𝐺  Fn  ω  ↔  ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑈 } )  ↾  ω )  Fn  ω ) | 
						
							| 25 | 23 24 | mpbir | ⊢ 𝐺  Fn  ω | 
						
							| 26 |  | fnunirn | ⊢ ( 𝐺  Fn  ω  →  ( 𝑓  ∈  ∪  ran  𝐺  ↔  ∃ 𝑘  ∈  ω 𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ( 𝑓  ∈  ∪  ran  𝐺  ↔  ∃ 𝑘  ∈  ω 𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 28 |  | n0 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) | 
						
							| 29 |  | inss1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ⊆  ( 𝐹 ‘ 𝑥 ) | 
						
							| 30 | 29 | sseli | ⊢ ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  →  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 | 6 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑣  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 32 | 30 31 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) )  →  ∃ 𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 33 | 32 | adantrl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ∃ 𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 34 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  ( 𝑡  ∈  ( 𝐹 ‘ 𝑥 )  ∧  ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 35 |  | fvssunirn | ⊢ ( 𝐹 ‘ 𝑥 )  ⊆  ∪  ran  𝐹 | 
						
							| 36 | 2 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝒫  𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 37 | 36 | difss2d | ⊢ ( 𝜑  →  ran  𝐹  ⊆  𝒫  𝒫  𝑋 ) | 
						
							| 38 |  | sspwuni | ⊢ ( ran  𝐹  ⊆  𝒫  𝒫  𝑋  ↔  ∪  ran  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( 𝜑  →  ∪  ran  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 40 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ∪  ran  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 41 | 35 40 | sstrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ⊆  𝒫  𝑋 ) | 
						
							| 42 | 41 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  →  𝑡  ∈  𝒫  𝑋 ) | 
						
							| 43 | 42 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  →  𝑡  ⊆  𝑋 ) | 
						
							| 44 | 43 | sselda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑡 )  →  𝑦  ∈  𝑋 ) | 
						
							| 45 | 44 | adantrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑦  ∈  𝑡  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 46 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 47 |  | rspe | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) )  →  ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) | 
						
							| 48 | 47 | ad2ant2l | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) | 
						
							| 49 |  | eliun | ⊢ ( 𝑣  ∈  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ↔  ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 50 |  | pweq | ⊢ ( 𝑧  =  𝑓  →  𝒫  𝑧  =  𝒫  𝑓 ) | 
						
							| 51 | 50 | ineq2d | ⊢ ( 𝑧  =  𝑓  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) | 
						
							| 52 | 51 | eleq2d | ⊢ ( 𝑧  =  𝑓  →  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ↔  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) ) | 
						
							| 53 | 52 | rexbidv | ⊢ ( 𝑧  =  𝑓  →  ( ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ↔  ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) ) | 
						
							| 54 | 49 53 | bitrid | ⊢ ( 𝑧  =  𝑓  →  ( 𝑣  ∈  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ↔  ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) ) | 
						
							| 55 | 54 | rspcev | ⊢ ( ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ∃ 𝑥  ∈  𝑋 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) )  →  ∃ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) 𝑣  ∈  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 56 | 46 48 55 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ∃ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) 𝑣  ∈  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 57 |  | eliun | ⊢ ( 𝑣  ∈  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ↔  ∃ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) 𝑣  ∈  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 58 | 56 57 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  𝑣  ∈  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 59 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  𝜑 ) | 
						
							| 60 |  | simprll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  𝑘  ∈  ω ) | 
						
							| 61 |  | fvssunirn | ⊢ ( 𝐺 ‘ 𝑘 )  ⊆  ∪  ran  𝐺 | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑛  =  ∅  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ ∅ ) ) | 
						
							| 63 | 11 | fveq1i | ⊢ ( 𝐺 ‘ ∅ )  =  ( ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑈 } )  ↾  ω ) ‘ ∅ ) | 
						
							| 64 |  | snex | ⊢ { 𝑈 }  ∈  V | 
						
							| 65 |  | fr0g | ⊢ ( { 𝑈 }  ∈  V  →  ( ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑈 } )  ↾  ω ) ‘ ∅ )  =  { 𝑈 } ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ ( ( rec ( ( 𝑎  ∈  V  ↦  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) ,  { 𝑈 } )  ↾  ω ) ‘ ∅ )  =  { 𝑈 } | 
						
							| 67 | 63 66 | eqtri | ⊢ ( 𝐺 ‘ ∅ )  =  { 𝑈 } | 
						
							| 68 | 62 67 | eqtrdi | ⊢ ( 𝑛  =  ∅  →  ( 𝐺 ‘ 𝑛 )  =  { 𝑈 } ) | 
						
							| 69 | 68 | sseq1d | ⊢ ( 𝑛  =  ∅  →  ( ( 𝐺 ‘ 𝑛 )  ⊆  𝒫  𝑈  ↔  { 𝑈 }  ⊆  𝒫  𝑈 ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 71 | 70 | sseq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐺 ‘ 𝑛 )  ⊆  𝒫  𝑈  ↔  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝑛  =  suc  𝑘  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ suc  𝑘 ) ) | 
						
							| 73 | 72 | sseq1d | ⊢ ( 𝑛  =  suc  𝑘  →  ( ( 𝐺 ‘ 𝑛 )  ⊆  𝒫  𝑈  ↔  ( 𝐺 ‘ suc  𝑘 )  ⊆  𝒫  𝑈 ) ) | 
						
							| 74 |  | pwidg | ⊢ ( 𝑈  ∈  ( 𝐹 ‘ 𝑃 )  →  𝑈  ∈  𝒫  𝑈 ) | 
						
							| 75 | 9 74 | syl | ⊢ ( 𝜑  →  𝑈  ∈  𝒫  𝑈 ) | 
						
							| 76 | 75 | snssd | ⊢ ( 𝜑  →  { 𝑈 }  ⊆  𝒫  𝑈 ) | 
						
							| 77 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  𝑘  ∈  ω ) | 
						
							| 78 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  𝑈  ∈  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 79 | 78 | pwexd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  𝒫  𝑈  ∈  V ) | 
						
							| 80 |  | inss2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑧 | 
						
							| 81 |  | elpwi | ⊢ ( 𝑧  ∈  𝒫  𝑈  →  𝑧  ⊆  𝑈 ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝑈 )  →  𝑧  ⊆  𝑈 ) | 
						
							| 83 | 82 | sspwd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝑈 )  →  𝒫  𝑧  ⊆  𝒫  𝑈 ) | 
						
							| 84 | 80 83 | sstrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝑈 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 85 | 84 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝑈 )  →  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 86 |  | iunss | ⊢ ( ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 87 | 85 86 | sylibr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝑈 )  →  ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 88 | 87 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝒫  𝑈 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 89 |  | ssralv | ⊢ ( ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈  →  ( ∀ 𝑧  ∈  𝒫  𝑈 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈  →  ∀ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 )  →  ( ∀ 𝑧  ∈  𝒫  𝑈 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈  →  ∀ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) ) | 
						
							| 91 | 88 90 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  ∀ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 92 |  | iunss | ⊢ ( ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈  ↔  ∀ 𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 93 | 91 92 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ⊆  𝒫  𝑈 ) | 
						
							| 94 | 79 93 | ssexd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ∈  V ) | 
						
							| 95 |  | iuneq1 | ⊢ ( 𝑦  =  𝑎  →  ∪  𝑧  ∈  𝑦 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  =  ∪  𝑧  ∈  𝑎 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 96 |  | iuneq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑘 )  →  ∪  𝑧  ∈  𝑦 ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  =  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 97 | 11 95 96 | frsucmpt2 | ⊢ ( ( 𝑘  ∈  ω  ∧  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 )  ∈  V )  →  ( 𝐺 ‘ suc  𝑘 )  =  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 98 | 77 94 97 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  ( 𝐺 ‘ suc  𝑘 )  =  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 99 | 98 93 | eqsstrd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ω  ∧  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) )  →  ( 𝐺 ‘ suc  𝑘 )  ⊆  𝒫  𝑈 ) | 
						
							| 100 | 99 | expr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ω )  →  ( ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈  →  ( 𝐺 ‘ suc  𝑘 )  ⊆  𝒫  𝑈 ) ) | 
						
							| 101 | 100 | expcom | ⊢ ( 𝑘  ∈  ω  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈  →  ( 𝐺 ‘ suc  𝑘 )  ⊆  𝒫  𝑈 ) ) ) | 
						
							| 102 | 69 71 73 76 101 | finds2 | ⊢ ( 𝑛  ∈  ω  →  ( 𝜑  →  ( 𝐺 ‘ 𝑛 )  ⊆  𝒫  𝑈 ) ) | 
						
							| 103 |  | fvex | ⊢ ( 𝐺 ‘ 𝑛 )  ∈  V | 
						
							| 104 | 103 | elpw | ⊢ ( ( 𝐺 ‘ 𝑛 )  ∈  𝒫  𝒫  𝑈  ↔  ( 𝐺 ‘ 𝑛 )  ⊆  𝒫  𝑈 ) | 
						
							| 105 | 102 104 | imbitrrdi | ⊢ ( 𝑛  ∈  ω  →  ( 𝜑  →  ( 𝐺 ‘ 𝑛 )  ∈  𝒫  𝒫  𝑈 ) ) | 
						
							| 106 | 105 | com12 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ω  →  ( 𝐺 ‘ 𝑛 )  ∈  𝒫  𝒫  𝑈 ) ) | 
						
							| 107 | 106 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ω ( 𝐺 ‘ 𝑛 )  ∈  𝒫  𝒫  𝑈 ) | 
						
							| 108 |  | ffnfv | ⊢ ( 𝐺 : ω ⟶ 𝒫  𝒫  𝑈  ↔  ( 𝐺  Fn  ω  ∧  ∀ 𝑛  ∈  ω ( 𝐺 ‘ 𝑛 )  ∈  𝒫  𝒫  𝑈 ) ) | 
						
							| 109 | 25 108 | mpbiran | ⊢ ( 𝐺 : ω ⟶ 𝒫  𝒫  𝑈  ↔  ∀ 𝑛  ∈  ω ( 𝐺 ‘ 𝑛 )  ∈  𝒫  𝒫  𝑈 ) | 
						
							| 110 | 107 109 | sylibr | ⊢ ( 𝜑  →  𝐺 : ω ⟶ 𝒫  𝒫  𝑈 ) | 
						
							| 111 | 110 | frnd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  𝒫  𝒫  𝑈 ) | 
						
							| 112 |  | sspwuni | ⊢ ( ran  𝐺  ⊆  𝒫  𝒫  𝑈  ↔  ∪  ran  𝐺  ⊆  𝒫  𝑈 ) | 
						
							| 113 | 111 112 | sylib | ⊢ ( 𝜑  →  ∪  ran  𝐺  ⊆  𝒫  𝑈 ) | 
						
							| 114 | 113 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ∪  ran  𝐺  ⊆  𝒫  𝑈 ) | 
						
							| 115 | 61 114 | sstrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) | 
						
							| 116 | 59 60 115 98 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ( 𝐺 ‘ suc  𝑘 )  =  ∪  𝑧  ∈  ( 𝐺 ‘ 𝑘 ) ∪  𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑧 ) ) | 
						
							| 117 | 58 116 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  𝑣  ∈  ( 𝐺 ‘ suc  𝑘 ) ) | 
						
							| 118 |  | peano2 | ⊢ ( 𝑘  ∈  ω  →  suc  𝑘  ∈  ω ) | 
						
							| 119 | 60 118 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  suc  𝑘  ∈  ω ) | 
						
							| 120 |  | fnfvelrn | ⊢ ( ( 𝐺  Fn  ω  ∧  suc  𝑘  ∈  ω )  →  ( 𝐺 ‘ suc  𝑘 )  ∈  ran  𝐺 ) | 
						
							| 121 | 25 119 120 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ( 𝐺 ‘ suc  𝑘 )  ∈  ran  𝐺 ) | 
						
							| 122 |  | elunii | ⊢ ( ( 𝑣  ∈  ( 𝐺 ‘ suc  𝑘 )  ∧  ( 𝐺 ‘ suc  𝑘 )  ∈  ran  𝐺 )  →  𝑣  ∈  ∪  ran  𝐺 ) | 
						
							| 123 | 117 121 122 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  𝑣  ∈  ∪  ran  𝐺 ) | 
						
							| 124 | 123 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑦  ∈  𝑡  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  𝑣  ∈  ∪  ran  𝐺 ) | 
						
							| 125 |  | simprr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑦  ∈  𝑡  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) | 
						
							| 126 |  | pweq | ⊢ ( 𝑓  =  𝑣  →  𝒫  𝑓  =  𝒫  𝑣 ) | 
						
							| 127 | 126 | ineq2d | ⊢ ( 𝑓  =  𝑣  →  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  =  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 ) ) | 
						
							| 128 | 127 | neeq1d | ⊢ ( 𝑓  =  𝑣  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) ) | 
						
							| 129 | 128 | rspcev | ⊢ ( ( 𝑣  ∈  ∪  ran  𝐺  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ )  →  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) | 
						
							| 130 | 124 125 129 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑦  ∈  𝑡  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) | 
						
							| 131 | 12 | reqabi | ⊢ ( 𝑦  ∈  𝑆  ↔  ( 𝑦  ∈  𝑋  ∧  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 132 | 45 130 131 | sylanbrc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑦  ∈  𝑡  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 133 | 132 | expr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑡 )  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅  →  𝑦  ∈  𝑆 ) ) | 
						
							| 134 | 133 | ralimdva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  𝑡  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ( ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅  →  ∀ 𝑦  ∈  𝑡 𝑦  ∈  𝑆 ) ) | 
						
							| 135 | 134 | impr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  ( 𝑡  ∈  ( 𝐹 ‘ 𝑥 )  ∧  ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  ∀ 𝑦  ∈  𝑡 𝑦  ∈  𝑆 ) | 
						
							| 136 |  | dfss3 | ⊢ ( 𝑡  ⊆  𝑆  ↔  ∀ 𝑦  ∈  𝑡 𝑦  ∈  𝑆 ) | 
						
							| 137 | 135 136 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  ( 𝑡  ∈  ( 𝐹 ‘ 𝑥 )  ∧  ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  𝑡  ⊆  𝑆 ) | 
						
							| 138 |  | velpw | ⊢ ( 𝑡  ∈  𝒫  𝑆  ↔  𝑡  ⊆  𝑆 ) | 
						
							| 139 | 137 138 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  ( 𝑡  ∈  ( 𝐹 ‘ 𝑥 )  ∧  ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  𝑡  ∈  𝒫  𝑆 ) | 
						
							| 140 |  | inelcm | ⊢ ( ( 𝑡  ∈  ( 𝐹 ‘ 𝑥 )  ∧  𝑡  ∈  𝒫  𝑆 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) | 
						
							| 141 | 34 139 140 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  ∧  ( 𝑡  ∈  ( 𝐹 ‘ 𝑥 )  ∧  ∀ 𝑦  ∈  𝑡 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑣 )  ≠  ∅ ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) | 
						
							| 142 | 33 141 | rexlimddv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  ∧  𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) | 
						
							| 143 | 142 | expr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) )  →  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 144 | 143 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) )  →  ( ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 145 | 28 144 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑘  ∈  ω  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 146 | 145 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑘  ∈  ω 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) ) | 
						
							| 147 | 27 146 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑓  ∈  ∪  ran  𝐺  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) ) | 
						
							| 148 | 147 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 149 | 148 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ∧  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑓 )  ≠  ∅ )  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 150 | 22 149 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑆  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 151 | 150 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) | 
						
							| 152 |  | pweq | ⊢ ( 𝑜  =  𝑆  →  𝒫  𝑜  =  𝒫  𝑆 ) | 
						
							| 153 | 152 | ineq2d | ⊢ ( 𝑜  =  𝑆  →  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  =  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 ) ) | 
						
							| 154 | 153 | neeq1d | ⊢ ( 𝑜  =  𝑆  →  ( ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 155 | 154 | raleqbi1dv | ⊢ ( 𝑜  =  𝑆  →  ( ∀ 𝑥  ∈  𝑜 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑜 )  ≠  ∅  ↔  ∀ 𝑥  ∈  𝑆 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 156 | 155 4 | elrab2 | ⊢ ( 𝑆  ∈  𝐽  ↔  ( 𝑆  ∈  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝑆 ( ( 𝐹 ‘ 𝑥 )  ∩  𝒫  𝑆 )  ≠  ∅ ) ) | 
						
							| 157 | 17 151 156 | sylanbrc | ⊢ ( 𝜑  →  𝑆  ∈  𝐽 ) | 
						
							| 158 |  | snidg | ⊢ ( 𝑈  ∈  ( 𝐹 ‘ 𝑃 )  →  𝑈  ∈  { 𝑈 } ) | 
						
							| 159 | 9 158 | syl | ⊢ ( 𝜑  →  𝑈  ∈  { 𝑈 } ) | 
						
							| 160 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 161 |  | fnfvelrn | ⊢ ( ( 𝐺  Fn  ω  ∧  ∅  ∈  ω )  →  ( 𝐺 ‘ ∅ )  ∈  ran  𝐺 ) | 
						
							| 162 | 25 160 161 | mp2an | ⊢ ( 𝐺 ‘ ∅ )  ∈  ran  𝐺 | 
						
							| 163 | 67 162 | eqeltrri | ⊢ { 𝑈 }  ∈  ran  𝐺 | 
						
							| 164 |  | elunii | ⊢ ( ( 𝑈  ∈  { 𝑈 }  ∧  { 𝑈 }  ∈  ran  𝐺 )  →  𝑈  ∈  ∪  ran  𝐺 ) | 
						
							| 165 | 159 163 164 | sylancl | ⊢ ( 𝜑  →  𝑈  ∈  ∪  ran  𝐺 ) | 
						
							| 166 |  | inelcm | ⊢ ( ( 𝑈  ∈  ( 𝐹 ‘ 𝑃 )  ∧  𝑈  ∈  𝒫  𝑈 )  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑈 )  ≠  ∅ ) | 
						
							| 167 | 9 75 166 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑈 )  ≠  ∅ ) | 
						
							| 168 |  | pweq | ⊢ ( 𝑓  =  𝑈  →  𝒫  𝑓  =  𝒫  𝑈 ) | 
						
							| 169 | 168 | ineq2d | ⊢ ( 𝑓  =  𝑈  →  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  =  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑈 ) ) | 
						
							| 170 | 169 | neeq1d | ⊢ ( 𝑓  =  𝑈  →  ( ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑈 )  ≠  ∅ ) ) | 
						
							| 171 | 170 | rspcev | ⊢ ( ( 𝑈  ∈  ∪  ran  𝐺  ∧  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑈 )  ≠  ∅ )  →  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  ≠  ∅ ) | 
						
							| 172 | 165 167 171 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  ≠  ∅ ) | 
						
							| 173 |  | fveq2 | ⊢ ( 𝑦  =  𝑃  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 174 | 173 | ineq1d | ⊢ ( 𝑦  =  𝑃  →  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  =  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 ) ) | 
						
							| 175 | 174 | neeq1d | ⊢ ( 𝑦  =  𝑃  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 176 | 175 | rexbidv | ⊢ ( 𝑦  =  𝑃  →  ( ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 177 | 176 12 | elrab2 | ⊢ ( 𝑃  ∈  𝑆  ↔  ( 𝑃  ∈  𝑋  ∧  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑃 )  ∩  𝒫  𝑓 )  ≠  ∅ ) ) | 
						
							| 178 | 7 172 177 | sylanbrc | ⊢ ( 𝜑  →  𝑃  ∈  𝑆 ) | 
						
							| 179 |  | eluni2 | ⊢ ( 𝑓  ∈  ∪  ran  𝐺  ↔  ∃ 𝑧  ∈  ran  𝐺 𝑓  ∈  𝑧 ) | 
						
							| 180 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝑓  ∈  𝑧  ↔  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 181 | 180 | rexrn | ⊢ ( 𝐺  Fn  ω  →  ( ∃ 𝑧  ∈  ran  𝐺 𝑓  ∈  𝑧  ↔  ∃ 𝑘  ∈  ω 𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 182 | 25 181 | ax-mp | ⊢ ( ∃ 𝑧  ∈  ran  𝐺 𝑓  ∈  𝑧  ↔  ∃ 𝑘  ∈  ω 𝑓  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 183 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝐺 : ω ⟶ 𝒫  𝒫  𝑈 ) | 
						
							| 184 | 183 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  →  ( 𝐺 ‘ 𝑘 )  ∈  𝒫  𝒫  𝑈 ) | 
						
							| 185 | 184 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  →  ( 𝐺 ‘ 𝑘 )  ⊆  𝒫  𝑈 ) | 
						
							| 186 | 185 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  →  𝑓  ∈  𝒫  𝑈 ) | 
						
							| 187 | 186 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) )  →  𝑓  ∈  𝒫  𝑈 ) | 
						
							| 188 | 187 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) )  →  𝑓  ⊆  𝑈 ) | 
						
							| 189 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) )  →  𝑈  ⊆  𝑁 ) | 
						
							| 190 | 188 189 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) )  →  𝑓  ⊆  𝑁 ) | 
						
							| 191 |  | n0 | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  ↔  ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 ) ) | 
						
							| 192 |  | elin | ⊢ ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ↔  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) | 
						
							| 193 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  𝑣  ∈  𝒫  𝑓 ) | 
						
							| 194 | 193 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  𝑣  ⊆  𝑓 ) | 
						
							| 195 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 196 | 5 | expr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑣  ∈  ( 𝐹 ‘ 𝑥 )  →  𝑥  ∈  𝑣 ) ) | 
						
							| 197 | 196 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ( 𝑣  ∈  ( 𝐹 ‘ 𝑥 )  →  𝑥  ∈  𝑣 ) ) | 
						
							| 198 | 197 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑣  ∈  ( 𝐹 ‘ 𝑥 )  →  𝑥  ∈  𝑣 ) ) | 
						
							| 199 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  𝑣  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 200 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 201 | 200 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑣  ∈  ( 𝐹 ‘ 𝑥 )  ↔  𝑣  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 202 |  | elequ1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑣  ↔  𝑦  ∈  𝑣 ) ) | 
						
							| 203 | 201 202 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑣  ∈  ( 𝐹 ‘ 𝑥 )  →  𝑥  ∈  𝑣 )  ↔  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  →  𝑦  ∈  𝑣 ) ) ) | 
						
							| 204 | 203 | rspcv | ⊢ ( 𝑦  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑣  ∈  ( 𝐹 ‘ 𝑥 )  →  𝑥  ∈  𝑣 )  →  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  →  𝑦  ∈  𝑣 ) ) ) | 
						
							| 205 | 195 198 199 204 | syl3c | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  𝑦  ∈  𝑣 ) | 
						
							| 206 | 194 205 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 ) ) )  →  𝑦  ∈  𝑓 ) | 
						
							| 207 | 206 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ( ( 𝑣  ∈  ( 𝐹 ‘ 𝑦 )  ∧  𝑣  ∈  𝒫  𝑓 )  →  𝑦  ∈  𝑓 ) ) | 
						
							| 208 | 192 207 | biimtrid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ( 𝑣  ∈  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  →  𝑦  ∈  𝑓 ) ) | 
						
							| 209 | 208 | exlimdv | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ( ∃ 𝑣 𝑣  ∈  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  →  𝑦  ∈  𝑓 ) ) | 
						
							| 210 | 191 209 | biimtrid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  𝑓  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  →  𝑦  ∈  𝑓 ) ) | 
						
							| 211 | 210 | impr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) )  →  𝑦  ∈  𝑓 ) | 
						
							| 212 | 190 211 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  ∧  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ ) )  →  𝑦  ∈  𝑁 ) | 
						
							| 213 | 212 | exp32 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  ω )  →  ( 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  →  𝑦  ∈  𝑁 ) ) ) | 
						
							| 214 | 213 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( ∃ 𝑘  ∈  ω 𝑓  ∈  ( 𝐺 ‘ 𝑘 )  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  →  𝑦  ∈  𝑁 ) ) ) | 
						
							| 215 | 182 214 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( ∃ 𝑧  ∈  ran  𝐺 𝑓  ∈  𝑧  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  →  𝑦  ∈  𝑁 ) ) ) | 
						
							| 216 | 179 215 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑓  ∈  ∪  ran  𝐺  →  ( ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  →  𝑦  ∈  𝑁 ) ) ) | 
						
							| 217 | 216 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅  →  𝑦  ∈  𝑁 ) ) | 
						
							| 218 | 217 | 3impia | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ )  →  𝑦  ∈  𝑁 ) | 
						
							| 219 | 218 | rabssdv | ⊢ ( 𝜑  →  { 𝑦  ∈  𝑋  ∣  ∃ 𝑓  ∈  ∪  ran  𝐺 ( ( 𝐹 ‘ 𝑦 )  ∩  𝒫  𝑓 )  ≠  ∅ }  ⊆  𝑁 ) | 
						
							| 220 | 12 219 | eqsstrid | ⊢ ( 𝜑  →  𝑆  ⊆  𝑁 ) | 
						
							| 221 |  | eleq2 | ⊢ ( 𝑢  =  𝑆  →  ( 𝑃  ∈  𝑢  ↔  𝑃  ∈  𝑆 ) ) | 
						
							| 222 |  | sseq1 | ⊢ ( 𝑢  =  𝑆  →  ( 𝑢  ⊆  𝑁  ↔  𝑆  ⊆  𝑁 ) ) | 
						
							| 223 | 221 222 | anbi12d | ⊢ ( 𝑢  =  𝑆  →  ( ( 𝑃  ∈  𝑢  ∧  𝑢  ⊆  𝑁 )  ↔  ( 𝑃  ∈  𝑆  ∧  𝑆  ⊆  𝑁 ) ) ) | 
						
							| 224 | 223 | rspcev | ⊢ ( ( 𝑆  ∈  𝐽  ∧  ( 𝑃  ∈  𝑆  ∧  𝑆  ⊆  𝑁 ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  ∧  𝑢  ⊆  𝑁 ) ) | 
						
							| 225 | 157 178 220 224 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  ∧  𝑢  ⊆  𝑁 ) ) |