Step |
Hyp |
Ref |
Expression |
1 |
|
neibastop1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
neibastop1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
3 |
|
neibastop1.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
4 |
|
neibastop1.4 |
⊢ 𝐽 = { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } |
5 |
|
neibastop1.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝑣 ) |
6 |
|
neibastop1.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
7 |
|
neibastop2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
8 |
|
neibastop2.n |
⊢ ( 𝜑 → 𝑁 ⊆ 𝑋 ) |
9 |
|
neibastop2.f |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) ) |
10 |
|
neibastop2.u |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑁 ) |
11 |
|
neibastop2.g |
⊢ 𝐺 = ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) |
12 |
|
neibastop2.s |
⊢ 𝑆 = { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } |
13 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } ⊆ 𝑋 |
14 |
12 13
|
eqsstri |
⊢ 𝑆 ⊆ 𝑋 |
15 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
17 |
14 16
|
mpbiri |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝑋 ) |
18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
18
|
ineq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
20 |
19
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
21 |
20
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
22 |
21 12
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
23 |
|
frfnom |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) Fn ω |
24 |
11
|
fneq1i |
⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) Fn ω ) |
25 |
23 24
|
mpbir |
⊢ 𝐺 Fn ω |
26 |
|
fnunirn |
⊢ ( 𝐺 Fn ω → ( 𝑓 ∈ ∪ ran 𝐺 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
27 |
25 26
|
ax-mp |
⊢ ( 𝑓 ∈ ∪ ran 𝐺 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) |
28 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
29 |
|
inss1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ⊆ ( 𝐹 ‘ 𝑥 ) |
30 |
29
|
sseli |
⊢ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) |
31 |
6
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
32 |
30 31
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
33 |
32
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
34 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) |
35 |
|
fvssunirn |
⊢ ( 𝐹 ‘ 𝑥 ) ⊆ ∪ ran 𝐹 |
36 |
2
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
37 |
36
|
difss2d |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ) |
38 |
|
sspwuni |
⊢ ( ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ↔ ∪ ran 𝐹 ⊆ 𝒫 𝑋 ) |
39 |
37 38
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐹 ⊆ 𝒫 𝑋 ) |
40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∪ ran 𝐹 ⊆ 𝒫 𝑋 ) |
41 |
35 40
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝒫 𝑋 ) |
42 |
41
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑡 ∈ 𝒫 𝑋 ) |
43 |
42
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑡 ⊆ 𝑋 ) |
44 |
43
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑡 ) → 𝑦 ∈ 𝑋 ) |
45 |
44
|
adantrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑋 ) |
46 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) |
47 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) → ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
48 |
47
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
49 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
50 |
|
pweq |
⊢ ( 𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓 ) |
51 |
50
|
ineq2d |
⊢ ( 𝑧 = 𝑓 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
52 |
51
|
eleq2d |
⊢ ( 𝑧 = 𝑓 → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) |
53 |
52
|
rexbidv |
⊢ ( 𝑧 = 𝑓 → ( ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) |
54 |
49 53
|
syl5bb |
⊢ ( 𝑧 = 𝑓 → ( 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) |
55 |
54
|
rspcev |
⊢ ( ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) → ∃ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
56 |
46 48 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∃ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
57 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
58 |
56 57
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
59 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝜑 ) |
60 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑘 ∈ ω ) |
61 |
|
fvssunirn |
⊢ ( 𝐺 ‘ 𝑘 ) ⊆ ∪ ran 𝐺 |
62 |
|
fveq2 |
⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ∅ ) ) |
63 |
11
|
fveq1i |
⊢ ( 𝐺 ‘ ∅ ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) ‘ ∅ ) |
64 |
|
snex |
⊢ { 𝑈 } ∈ V |
65 |
|
fr0g |
⊢ ( { 𝑈 } ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) ‘ ∅ ) = { 𝑈 } ) |
66 |
64 65
|
ax-mp |
⊢ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) ‘ ∅ ) = { 𝑈 } |
67 |
63 66
|
eqtri |
⊢ ( 𝐺 ‘ ∅ ) = { 𝑈 } |
68 |
62 67
|
eqtrdi |
⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ 𝑛 ) = { 𝑈 } ) |
69 |
68
|
sseq1d |
⊢ ( 𝑛 = ∅ → ( ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ↔ { 𝑈 } ⊆ 𝒫 𝑈 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
71 |
70
|
sseq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ↔ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) |
72 |
|
fveq2 |
⊢ ( 𝑛 = suc 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ suc 𝑘 ) ) |
73 |
72
|
sseq1d |
⊢ ( 𝑛 = suc 𝑘 → ( ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ↔ ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) ) |
74 |
|
pwidg |
⊢ ( 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) → 𝑈 ∈ 𝒫 𝑈 ) |
75 |
9 74
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ 𝒫 𝑈 ) |
76 |
75
|
snssd |
⊢ ( 𝜑 → { 𝑈 } ⊆ 𝒫 𝑈 ) |
77 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → 𝑘 ∈ ω ) |
78 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) ) |
79 |
78
|
pwexd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → 𝒫 𝑈 ∈ V ) |
80 |
|
inss2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑧 |
81 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝑈 → 𝑧 ⊆ 𝑈 ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → 𝑧 ⊆ 𝑈 ) |
83 |
82
|
sspwd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → 𝒫 𝑧 ⊆ 𝒫 𝑈 ) |
84 |
80 83
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
85 |
84
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
86 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
87 |
85 86
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
88 |
87
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝒫 𝑈 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
89 |
|
ssralv |
⊢ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 → ( ∀ 𝑧 ∈ 𝒫 𝑈 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 → ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) → ( ∀ 𝑧 ∈ 𝒫 𝑈 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 → ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) ) |
91 |
88 90
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
92 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ↔ ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
93 |
91 92
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
94 |
79 93
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ∈ V ) |
95 |
|
iuneq1 |
⊢ ( 𝑦 = 𝑎 → ∪ 𝑧 ∈ 𝑦 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) = ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
96 |
|
iuneq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑘 ) → ∪ 𝑧 ∈ 𝑦 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
97 |
11 95 96
|
frsucmpt2 |
⊢ ( ( 𝑘 ∈ ω ∧ ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ∈ V ) → ( 𝐺 ‘ suc 𝑘 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
98 |
77 94 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ( 𝐺 ‘ suc 𝑘 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
99 |
98 93
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) |
100 |
99
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ) → ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 → ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) ) |
101 |
100
|
expcom |
⊢ ( 𝑘 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 → ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) ) ) |
102 |
69 71 73 76 101
|
finds2 |
⊢ ( 𝑛 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ) ) |
103 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑛 ) ∈ V |
104 |
103
|
elpw |
⊢ ( ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ↔ ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ) |
105 |
102 104
|
syl6ibr |
⊢ ( 𝑛 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) ) |
106 |
105
|
com12 |
⊢ ( 𝜑 → ( 𝑛 ∈ ω → ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) ) |
107 |
106
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ω ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) |
108 |
|
ffnfv |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ↔ ( 𝐺 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) ) |
109 |
25 108
|
mpbiran |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ↔ ∀ 𝑛 ∈ ω ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) |
110 |
107 109
|
sylibr |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ) |
111 |
110
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ) |
112 |
|
sspwuni |
⊢ ( ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ↔ ∪ ran 𝐺 ⊆ 𝒫 𝑈 ) |
113 |
111 112
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐺 ⊆ 𝒫 𝑈 ) |
114 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∪ ran 𝐺 ⊆ 𝒫 𝑈 ) |
115 |
61 114
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) |
116 |
59 60 115 98
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐺 ‘ suc 𝑘 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
117 |
58 116
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ( 𝐺 ‘ suc 𝑘 ) ) |
118 |
|
peano2 |
⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) |
119 |
60 118
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → suc 𝑘 ∈ ω ) |
120 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ω ∧ suc 𝑘 ∈ ω ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ran 𝐺 ) |
121 |
25 119 120
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ran 𝐺 ) |
122 |
|
elunii |
⊢ ( ( 𝑣 ∈ ( 𝐺 ‘ suc 𝑘 ) ∧ ( 𝐺 ‘ suc 𝑘 ) ∈ ran 𝐺 ) → 𝑣 ∈ ∪ ran 𝐺 ) |
123 |
117 121 122
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ∪ ran 𝐺 ) |
124 |
123
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑣 ∈ ∪ ran 𝐺 ) |
125 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
126 |
|
pweq |
⊢ ( 𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣 ) |
127 |
126
|
ineq2d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ) |
128 |
127
|
neeq1d |
⊢ ( 𝑓 = 𝑣 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) |
129 |
128
|
rspcev |
⊢ ( ( 𝑣 ∈ ∪ ran 𝐺 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
130 |
124 125 129
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
131 |
12
|
rabeq2i |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
132 |
45 130 131
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑆 ) |
133 |
132
|
expr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑡 ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ → 𝑦 ∈ 𝑆 ) ) |
134 |
133
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ → ∀ 𝑦 ∈ 𝑡 𝑦 ∈ 𝑆 ) ) |
135 |
134
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ∀ 𝑦 ∈ 𝑡 𝑦 ∈ 𝑆 ) |
136 |
|
dfss3 |
⊢ ( 𝑡 ⊆ 𝑆 ↔ ∀ 𝑦 ∈ 𝑡 𝑦 ∈ 𝑆 ) |
137 |
135 136
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑡 ⊆ 𝑆 ) |
138 |
|
velpw |
⊢ ( 𝑡 ∈ 𝒫 𝑆 ↔ 𝑡 ⊆ 𝑆 ) |
139 |
137 138
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑡 ∈ 𝒫 𝑆 ) |
140 |
|
inelcm |
⊢ ( ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑡 ∈ 𝒫 𝑆 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
141 |
34 139 140
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
142 |
33 141
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
143 |
142
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
144 |
143
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) → ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
145 |
28 144
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
146 |
145
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) ) |
147 |
27 146
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ran 𝐺 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) ) |
148 |
147
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
149 |
148
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
150 |
22 149
|
syl5bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
151 |
150
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
152 |
|
pweq |
⊢ ( 𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆 ) |
153 |
152
|
ineq2d |
⊢ ( 𝑜 = 𝑆 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ) |
154 |
153
|
neeq1d |
⊢ ( 𝑜 = 𝑆 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
155 |
154
|
raleqbi1dv |
⊢ ( 𝑜 = 𝑆 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
156 |
155 4
|
elrab2 |
⊢ ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
157 |
17 151 156
|
sylanbrc |
⊢ ( 𝜑 → 𝑆 ∈ 𝐽 ) |
158 |
|
snidg |
⊢ ( 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) → 𝑈 ∈ { 𝑈 } ) |
159 |
9 158
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ { 𝑈 } ) |
160 |
|
peano1 |
⊢ ∅ ∈ ω |
161 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ω ∧ ∅ ∈ ω ) → ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 ) |
162 |
25 160 161
|
mp2an |
⊢ ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 |
163 |
67 162
|
eqeltrri |
⊢ { 𝑈 } ∈ ran 𝐺 |
164 |
|
elunii |
⊢ ( ( 𝑈 ∈ { 𝑈 } ∧ { 𝑈 } ∈ ran 𝐺 ) → 𝑈 ∈ ∪ ran 𝐺 ) |
165 |
159 163 164
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ ∪ ran 𝐺 ) |
166 |
|
inelcm |
⊢ ( ( 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑈 ∈ 𝒫 𝑈 ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) |
167 |
9 75 166
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) |
168 |
|
pweq |
⊢ ( 𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈 ) |
169 |
168
|
ineq2d |
⊢ ( 𝑓 = 𝑈 → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ) |
170 |
169
|
neeq1d |
⊢ ( 𝑓 = 𝑈 → ( ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) ) |
171 |
170
|
rspcev |
⊢ ( ( 𝑈 ∈ ∪ ran 𝐺 ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
172 |
165 167 171
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
173 |
|
fveq2 |
⊢ ( 𝑦 = 𝑃 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑃 ) ) |
174 |
173
|
ineq1d |
⊢ ( 𝑦 = 𝑃 → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ) |
175 |
174
|
neeq1d |
⊢ ( 𝑦 = 𝑃 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
176 |
175
|
rexbidv |
⊢ ( 𝑦 = 𝑃 → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
177 |
176 12
|
elrab2 |
⊢ ( 𝑃 ∈ 𝑆 ↔ ( 𝑃 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
178 |
7 172 177
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |
179 |
|
eluni2 |
⊢ ( 𝑓 ∈ ∪ ran 𝐺 ↔ ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 ) |
180 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( 𝑓 ∈ 𝑧 ↔ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
181 |
180
|
rexrn |
⊢ ( 𝐺 Fn ω → ( ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
182 |
25 181
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) |
183 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ) |
184 |
183
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝒫 𝒫 𝑈 ) |
185 |
184
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) → ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) |
186 |
185
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → 𝑓 ∈ 𝒫 𝑈 ) |
187 |
186
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑓 ∈ 𝒫 𝑈 ) |
188 |
187
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑓 ⊆ 𝑈 ) |
189 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑈 ⊆ 𝑁 ) |
190 |
188 189
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑓 ⊆ 𝑁 ) |
191 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ) |
192 |
|
elin |
⊢ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ↔ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) |
193 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑣 ∈ 𝒫 𝑓 ) |
194 |
193
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑣 ⊆ 𝑓 ) |
195 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑦 ∈ 𝑋 ) |
196 |
5
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ) |
197 |
196
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ) |
198 |
197
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ) |
199 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ) |
200 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
201 |
200
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
202 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑣 ↔ 𝑦 ∈ 𝑣 ) ) |
203 |
201 202
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ↔ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) → 𝑦 ∈ 𝑣 ) ) ) |
204 |
203
|
rspcv |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) → ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) → 𝑦 ∈ 𝑣 ) ) ) |
205 |
195 198 199 204
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑦 ∈ 𝑣 ) |
206 |
194 205
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑦 ∈ 𝑓 ) |
207 |
206
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
208 |
192 207
|
syl5bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
209 |
208
|
exlimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
210 |
191 209
|
syl5bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑓 ) ) |
211 |
210
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑓 ) |
212 |
190 211
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑁 ) |
213 |
212
|
exp32 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) → ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
214 |
213
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
215 |
182 214
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
216 |
179 215
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ran 𝐺 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
217 |
216
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) |
218 |
217
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) → 𝑦 ∈ 𝑁 ) |
219 |
218
|
rabssdv |
⊢ ( 𝜑 → { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } ⊆ 𝑁 ) |
220 |
12 219
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑁 ) |
221 |
|
eleq2 |
⊢ ( 𝑢 = 𝑆 → ( 𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑆 ) ) |
222 |
|
sseq1 |
⊢ ( 𝑢 = 𝑆 → ( 𝑢 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁 ) ) |
223 |
221 222
|
anbi12d |
⊢ ( 𝑢 = 𝑆 → ( ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ↔ ( 𝑃 ∈ 𝑆 ∧ 𝑆 ⊆ 𝑁 ) ) ) |
224 |
223
|
rspcev |
⊢ ( ( 𝑆 ∈ 𝐽 ∧ ( 𝑃 ∈ 𝑆 ∧ 𝑆 ⊆ 𝑁 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) |
225 |
157 178 220 224
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) |