| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
neibastop1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
| 3 |
|
neibastop1.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
| 4 |
|
neibastop1.4 |
⊢ 𝐽 = { 𝑜 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ } |
| 5 |
|
neibastop1.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝑣 ) |
| 6 |
|
neibastop1.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
| 7 |
|
neibastop2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 8 |
|
neibastop2.n |
⊢ ( 𝜑 → 𝑁 ⊆ 𝑋 ) |
| 9 |
|
neibastop2.f |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) ) |
| 10 |
|
neibastop2.u |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑁 ) |
| 11 |
|
neibastop2.g |
⊢ 𝐺 = ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) |
| 12 |
|
neibastop2.s |
⊢ 𝑆 = { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } |
| 13 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } ⊆ 𝑋 |
| 14 |
12 13
|
eqsstri |
⊢ 𝑆 ⊆ 𝑋 |
| 15 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 16 |
1 15
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 17 |
14 16
|
mpbiri |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝑋 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 19 |
18
|
ineq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
| 20 |
19
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 22 |
21 12
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 23 |
|
frfnom |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) Fn ω |
| 24 |
11
|
fneq1i |
⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) Fn ω ) |
| 25 |
23 24
|
mpbir |
⊢ 𝐺 Fn ω |
| 26 |
|
fnunirn |
⊢ ( 𝐺 Fn ω → ( 𝑓 ∈ ∪ ran 𝐺 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 27 |
25 26
|
ax-mp |
⊢ ( 𝑓 ∈ ∪ ran 𝐺 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 28 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
| 29 |
|
inss1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ⊆ ( 𝐹 ‘ 𝑥 ) |
| 30 |
29
|
sseli |
⊢ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 31 |
6
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
| 32 |
30 31
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
| 33 |
32
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∃ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
| 34 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 35 |
|
fvssunirn |
⊢ ( 𝐹 ‘ 𝑥 ) ⊆ ∪ ran 𝐹 |
| 36 |
2
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝒫 𝒫 𝑋 ∖ { ∅ } ) ) |
| 37 |
36
|
difss2d |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ) |
| 38 |
|
sspwuni |
⊢ ( ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ↔ ∪ ran 𝐹 ⊆ 𝒫 𝑋 ) |
| 39 |
37 38
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐹 ⊆ 𝒫 𝑋 ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∪ ran 𝐹 ⊆ 𝒫 𝑋 ) |
| 41 |
35 40
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝒫 𝑋 ) |
| 42 |
41
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑡 ∈ 𝒫 𝑋 ) |
| 43 |
42
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑡 ⊆ 𝑋 ) |
| 44 |
43
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑡 ) → 𝑦 ∈ 𝑋 ) |
| 45 |
44
|
adantrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑋 ) |
| 46 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 47 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) → ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
| 48 |
47
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
| 49 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 50 |
|
pweq |
⊢ ( 𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓 ) |
| 51 |
50
|
ineq2d |
⊢ ( 𝑧 = 𝑓 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) |
| 52 |
51
|
eleq2d |
⊢ ( 𝑧 = 𝑓 → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) |
| 53 |
52
|
rexbidv |
⊢ ( 𝑧 = 𝑓 → ( ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) |
| 54 |
49 53
|
bitrid |
⊢ ( 𝑧 = 𝑓 → ( 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) |
| 55 |
54
|
rspcev |
⊢ ( ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∃ 𝑥 ∈ 𝑋 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) → ∃ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 56 |
46 48 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∃ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 57 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) 𝑣 ∈ ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 58 |
56 57
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 59 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝜑 ) |
| 60 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑘 ∈ ω ) |
| 61 |
|
fvssunirn |
⊢ ( 𝐺 ‘ 𝑘 ) ⊆ ∪ ran 𝐺 |
| 62 |
|
fveq2 |
⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ∅ ) ) |
| 63 |
11
|
fveq1i |
⊢ ( 𝐺 ‘ ∅ ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) ‘ ∅ ) |
| 64 |
|
snex |
⊢ { 𝑈 } ∈ V |
| 65 |
|
fr0g |
⊢ ( { 𝑈 } ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) ‘ ∅ ) = { 𝑈 } ) |
| 66 |
64 65
|
ax-mp |
⊢ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) , { 𝑈 } ) ↾ ω ) ‘ ∅ ) = { 𝑈 } |
| 67 |
63 66
|
eqtri |
⊢ ( 𝐺 ‘ ∅ ) = { 𝑈 } |
| 68 |
62 67
|
eqtrdi |
⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ 𝑛 ) = { 𝑈 } ) |
| 69 |
68
|
sseq1d |
⊢ ( 𝑛 = ∅ → ( ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ↔ { 𝑈 } ⊆ 𝒫 𝑈 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 71 |
70
|
sseq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ↔ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑛 = suc 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ suc 𝑘 ) ) |
| 73 |
72
|
sseq1d |
⊢ ( 𝑛 = suc 𝑘 → ( ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ↔ ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) ) |
| 74 |
|
pwidg |
⊢ ( 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) → 𝑈 ∈ 𝒫 𝑈 ) |
| 75 |
9 74
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ 𝒫 𝑈 ) |
| 76 |
75
|
snssd |
⊢ ( 𝜑 → { 𝑈 } ⊆ 𝒫 𝑈 ) |
| 77 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → 𝑘 ∈ ω ) |
| 78 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) ) |
| 79 |
78
|
pwexd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → 𝒫 𝑈 ∈ V ) |
| 80 |
|
inss2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑧 |
| 81 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝑈 → 𝑧 ⊆ 𝑈 ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → 𝑧 ⊆ 𝑈 ) |
| 83 |
82
|
sspwd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → 𝒫 𝑧 ⊆ 𝒫 𝑈 ) |
| 84 |
80 83
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 85 |
84
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 86 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 87 |
85 86
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝑈 ) → ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 88 |
87
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝒫 𝑈 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 89 |
|
ssralv |
⊢ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 → ( ∀ 𝑧 ∈ 𝒫 𝑈 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 → ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) → ( ∀ 𝑧 ∈ 𝒫 𝑈 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 → ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) ) |
| 91 |
88 90
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 92 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ↔ ∀ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 93 |
91 92
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ⊆ 𝒫 𝑈 ) |
| 94 |
79 93
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ∈ V ) |
| 95 |
|
iuneq1 |
⊢ ( 𝑦 = 𝑎 → ∪ 𝑧 ∈ 𝑦 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) = ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 96 |
|
iuneq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑘 ) → ∪ 𝑧 ∈ 𝑦 ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 97 |
11 95 96
|
frsucmpt2 |
⊢ ( ( 𝑘 ∈ ω ∧ ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ∈ V ) → ( 𝐺 ‘ suc 𝑘 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 98 |
77 94 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ( 𝐺 ‘ suc 𝑘 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 99 |
98 93
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) ) → ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) |
| 100 |
99
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ) → ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 → ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) ) |
| 101 |
100
|
expcom |
⊢ ( 𝑘 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 → ( 𝐺 ‘ suc 𝑘 ) ⊆ 𝒫 𝑈 ) ) ) |
| 102 |
69 71 73 76 101
|
finds2 |
⊢ ( 𝑛 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ) ) |
| 103 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑛 ) ∈ V |
| 104 |
103
|
elpw |
⊢ ( ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ↔ ( 𝐺 ‘ 𝑛 ) ⊆ 𝒫 𝑈 ) |
| 105 |
102 104
|
imbitrrdi |
⊢ ( 𝑛 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) ) |
| 106 |
105
|
com12 |
⊢ ( 𝜑 → ( 𝑛 ∈ ω → ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) ) |
| 107 |
106
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ω ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) |
| 108 |
|
ffnfv |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ↔ ( 𝐺 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) ) |
| 109 |
25 108
|
mpbiran |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ↔ ∀ 𝑛 ∈ ω ( 𝐺 ‘ 𝑛 ) ∈ 𝒫 𝒫 𝑈 ) |
| 110 |
107 109
|
sylibr |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ) |
| 111 |
110
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ) |
| 112 |
|
sspwuni |
⊢ ( ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ↔ ∪ ran 𝐺 ⊆ 𝒫 𝑈 ) |
| 113 |
111 112
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐺 ⊆ 𝒫 𝑈 ) |
| 114 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ∪ ran 𝐺 ⊆ 𝒫 𝑈 ) |
| 115 |
61 114
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) |
| 116 |
59 60 115 98
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐺 ‘ suc 𝑘 ) = ∪ 𝑧 ∈ ( 𝐺 ‘ 𝑘 ) ∪ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑧 ) ) |
| 117 |
58 116
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ( 𝐺 ‘ suc 𝑘 ) ) |
| 118 |
|
peano2 |
⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) |
| 119 |
60 118
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → suc 𝑘 ∈ ω ) |
| 120 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ω ∧ suc 𝑘 ∈ ω ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ran 𝐺 ) |
| 121 |
25 119 120
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ran 𝐺 ) |
| 122 |
|
elunii |
⊢ ( ( 𝑣 ∈ ( 𝐺 ‘ suc 𝑘 ) ∧ ( 𝐺 ‘ suc 𝑘 ) ∈ ran 𝐺 ) → 𝑣 ∈ ∪ ran 𝐺 ) |
| 123 |
117 121 122
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ∪ ran 𝐺 ) |
| 124 |
123
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑣 ∈ ∪ ran 𝐺 ) |
| 125 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) |
| 126 |
|
pweq |
⊢ ( 𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣 ) |
| 127 |
126
|
ineq2d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ) |
| 128 |
127
|
neeq1d |
⊢ ( 𝑓 = 𝑣 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) |
| 129 |
128
|
rspcev |
⊢ ( ( 𝑣 ∈ ∪ ran 𝐺 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
| 130 |
124 125 129
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
| 131 |
12
|
reqabi |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 132 |
45 130 131
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝑡 ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑆 ) |
| 133 |
132
|
expr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑡 ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ → 𝑦 ∈ 𝑆 ) ) |
| 134 |
133
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ → ∀ 𝑦 ∈ 𝑡 𝑦 ∈ 𝑆 ) ) |
| 135 |
134
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ∀ 𝑦 ∈ 𝑡 𝑦 ∈ 𝑆 ) |
| 136 |
|
dfss3 |
⊢ ( 𝑡 ⊆ 𝑆 ↔ ∀ 𝑦 ∈ 𝑡 𝑦 ∈ 𝑆 ) |
| 137 |
135 136
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑡 ⊆ 𝑆 ) |
| 138 |
|
velpw |
⊢ ( 𝑡 ∈ 𝒫 𝑆 ↔ 𝑡 ⊆ 𝑆 ) |
| 139 |
137 138
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → 𝑡 ∈ 𝒫 𝑆 ) |
| 140 |
|
inelcm |
⊢ ( ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑡 ∈ 𝒫 𝑆 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
| 141 |
34 139 140
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) ∧ ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑡 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑣 ) ≠ ∅ ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
| 142 |
33 141
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ∧ 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
| 143 |
142
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 144 |
143
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) → ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 145 |
28 144
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ω ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 146 |
145
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) ) |
| 147 |
27 146
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ran 𝐺 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) ) |
| 148 |
147
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 149 |
148
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 150 |
22 149
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 151 |
150
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) |
| 152 |
|
pweq |
⊢ ( 𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆 ) |
| 153 |
152
|
ineq2d |
⊢ ( 𝑜 = 𝑆 → ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) = ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ) |
| 154 |
153
|
neeq1d |
⊢ ( 𝑜 = 𝑆 → ( ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 155 |
154
|
raleqbi1dv |
⊢ ( 𝑜 = 𝑆 → ( ∀ 𝑥 ∈ 𝑜 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑜 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 156 |
155 4
|
elrab2 |
⊢ ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝑥 ) ∩ 𝒫 𝑆 ) ≠ ∅ ) ) |
| 157 |
17 151 156
|
sylanbrc |
⊢ ( 𝜑 → 𝑆 ∈ 𝐽 ) |
| 158 |
|
snidg |
⊢ ( 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) → 𝑈 ∈ { 𝑈 } ) |
| 159 |
9 158
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ { 𝑈 } ) |
| 160 |
|
peano1 |
⊢ ∅ ∈ ω |
| 161 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ω ∧ ∅ ∈ ω ) → ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 ) |
| 162 |
25 160 161
|
mp2an |
⊢ ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 |
| 163 |
67 162
|
eqeltrri |
⊢ { 𝑈 } ∈ ran 𝐺 |
| 164 |
|
elunii |
⊢ ( ( 𝑈 ∈ { 𝑈 } ∧ { 𝑈 } ∈ ran 𝐺 ) → 𝑈 ∈ ∪ ran 𝐺 ) |
| 165 |
159 163 164
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ ∪ ran 𝐺 ) |
| 166 |
|
inelcm |
⊢ ( ( 𝑈 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑈 ∈ 𝒫 𝑈 ) → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) |
| 167 |
9 75 166
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) |
| 168 |
|
pweq |
⊢ ( 𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈 ) |
| 169 |
168
|
ineq2d |
⊢ ( 𝑓 = 𝑈 → ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ) |
| 170 |
169
|
neeq1d |
⊢ ( 𝑓 = 𝑈 → ( ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) ) |
| 171 |
170
|
rspcev |
⊢ ( ( 𝑈 ∈ ∪ ran 𝐺 ∧ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑈 ) ≠ ∅ ) → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
| 172 |
165 167 171
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) |
| 173 |
|
fveq2 |
⊢ ( 𝑦 = 𝑃 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 174 |
173
|
ineq1d |
⊢ ( 𝑦 = 𝑃 → ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) = ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ) |
| 175 |
174
|
neeq1d |
⊢ ( 𝑦 = 𝑃 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 176 |
175
|
rexbidv |
⊢ ( 𝑦 = 𝑃 → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 177 |
176 12
|
elrab2 |
⊢ ( 𝑃 ∈ 𝑆 ↔ ( 𝑃 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑃 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) |
| 178 |
7 172 177
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |
| 179 |
|
eluni2 |
⊢ ( 𝑓 ∈ ∪ ran 𝐺 ↔ ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 ) |
| 180 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( 𝑓 ∈ 𝑧 ↔ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 181 |
180
|
rexrn |
⊢ ( 𝐺 Fn ω → ( ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 182 |
25 181
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 183 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐺 : ω ⟶ 𝒫 𝒫 𝑈 ) |
| 184 |
183
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝒫 𝒫 𝑈 ) |
| 185 |
184
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) → ( 𝐺 ‘ 𝑘 ) ⊆ 𝒫 𝑈 ) |
| 186 |
185
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → 𝑓 ∈ 𝒫 𝑈 ) |
| 187 |
186
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑓 ∈ 𝒫 𝑈 ) |
| 188 |
187
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑓 ⊆ 𝑈 ) |
| 189 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑈 ⊆ 𝑁 ) |
| 190 |
188 189
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑓 ⊆ 𝑁 ) |
| 191 |
|
n0 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ) |
| 192 |
|
elin |
⊢ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ↔ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) |
| 193 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑣 ∈ 𝒫 𝑓 ) |
| 194 |
193
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑣 ⊆ 𝑓 ) |
| 195 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 196 |
5
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ) |
| 197 |
196
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ) |
| 198 |
197
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ) |
| 199 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 200 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 201 |
200
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 202 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑣 ↔ 𝑦 ∈ 𝑣 ) ) |
| 203 |
201 202
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) ↔ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) → 𝑦 ∈ 𝑣 ) ) ) |
| 204 |
203
|
rspcv |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑣 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑥 ∈ 𝑣 ) → ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) → 𝑦 ∈ 𝑣 ) ) ) |
| 205 |
195 198 199 204
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑦 ∈ 𝑣 ) |
| 206 |
194 205
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) ) ) → 𝑦 ∈ 𝑓 ) |
| 207 |
206
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ∧ 𝑣 ∈ 𝒫 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
| 208 |
192 207
|
biimtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
| 209 |
208
|
exlimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( ∃ 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
| 210 |
191 209
|
biimtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑓 ) ) |
| 211 |
210
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑓 ) |
| 212 |
190 211
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) ∧ ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) ) → 𝑦 ∈ 𝑁 ) |
| 213 |
212
|
exp32 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ ω ) → ( 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
| 214 |
213
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ ω 𝑓 ∈ ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
| 215 |
182 214
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran 𝐺 𝑓 ∈ 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
| 216 |
179 215
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ran 𝐺 → ( ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) ) |
| 217 |
216
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ → 𝑦 ∈ 𝑁 ) ) |
| 218 |
217
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ ) → 𝑦 ∈ 𝑁 ) |
| 219 |
218
|
rabssdv |
⊢ ( 𝜑 → { 𝑦 ∈ 𝑋 ∣ ∃ 𝑓 ∈ ∪ ran 𝐺 ( ( 𝐹 ‘ 𝑦 ) ∩ 𝒫 𝑓 ) ≠ ∅ } ⊆ 𝑁 ) |
| 220 |
12 219
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑁 ) |
| 221 |
|
eleq2 |
⊢ ( 𝑢 = 𝑆 → ( 𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑆 ) ) |
| 222 |
|
sseq1 |
⊢ ( 𝑢 = 𝑆 → ( 𝑢 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁 ) ) |
| 223 |
221 222
|
anbi12d |
⊢ ( 𝑢 = 𝑆 → ( ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ↔ ( 𝑃 ∈ 𝑆 ∧ 𝑆 ⊆ 𝑁 ) ) ) |
| 224 |
223
|
rspcev |
⊢ ( ( 𝑆 ∈ 𝐽 ∧ ( 𝑃 ∈ 𝑆 ∧ 𝑆 ⊆ 𝑁 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) |
| 225 |
157 178 220 224
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁 ) ) |