| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptunhmeo.x |
|- X = U. K |
| 2 |
|
ptunhmeo.y |
|- Y = U. L |
| 3 |
|
ptunhmeo.j |
|- J = ( Xt_ ` F ) |
| 4 |
|
ptunhmeo.k |
|- K = ( Xt_ ` ( F |` A ) ) |
| 5 |
|
ptunhmeo.l |
|- L = ( Xt_ ` ( F |` B ) ) |
| 6 |
|
ptunhmeo.g |
|- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
| 7 |
|
ptunhmeo.c |
|- ( ph -> C e. V ) |
| 8 |
|
ptunhmeo.f |
|- ( ph -> F : C --> Top ) |
| 9 |
|
ptunhmeo.u |
|- ( ph -> C = ( A u. B ) ) |
| 10 |
|
ptunhmeo.i |
|- ( ph -> ( A i^i B ) = (/) ) |
| 11 |
|
vex |
|- x e. _V |
| 12 |
|
vex |
|- y e. _V |
| 13 |
11 12
|
op1std |
|- ( w = <. x , y >. -> ( 1st ` w ) = x ) |
| 14 |
11 12
|
op2ndd |
|- ( w = <. x , y >. -> ( 2nd ` w ) = y ) |
| 15 |
13 14
|
uneq12d |
|- ( w = <. x , y >. -> ( ( 1st ` w ) u. ( 2nd ` w ) ) = ( x u. y ) ) |
| 16 |
15
|
mpompt |
|- ( w e. ( X X. Y ) |-> ( ( 1st ` w ) u. ( 2nd ` w ) ) ) = ( x e. X , y e. Y |-> ( x u. y ) ) |
| 17 |
6 16
|
eqtr4i |
|- G = ( w e. ( X X. Y ) |-> ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
| 18 |
|
xp1st |
|- ( w e. ( X X. Y ) -> ( 1st ` w ) e. X ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) e. X ) |
| 20 |
|
ixpeq2 |
|- ( A. k e. A U. ( ( F |` A ) ` k ) = U. ( F ` k ) -> X_ k e. A U. ( ( F |` A ) ` k ) = X_ k e. A U. ( F ` k ) ) |
| 21 |
|
fvres |
|- ( k e. A -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
| 22 |
21
|
unieqd |
|- ( k e. A -> U. ( ( F |` A ) ` k ) = U. ( F ` k ) ) |
| 23 |
20 22
|
mprg |
|- X_ k e. A U. ( ( F |` A ) ` k ) = X_ k e. A U. ( F ` k ) |
| 24 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 25 |
24 9
|
sseqtrrid |
|- ( ph -> A C_ C ) |
| 26 |
7 25
|
ssexd |
|- ( ph -> A e. _V ) |
| 27 |
8 25
|
fssresd |
|- ( ph -> ( F |` A ) : A --> Top ) |
| 28 |
4
|
ptuni |
|- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> X_ k e. A U. ( ( F |` A ) ` k ) = U. K ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ph -> X_ k e. A U. ( ( F |` A ) ` k ) = U. K ) |
| 30 |
23 29
|
eqtr3id |
|- ( ph -> X_ k e. A U. ( F ` k ) = U. K ) |
| 31 |
30 1
|
eqtr4di |
|- ( ph -> X_ k e. A U. ( F ` k ) = X ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. A U. ( F ` k ) = X ) |
| 33 |
19 32
|
eleqtrrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) e. X_ k e. A U. ( F ` k ) ) |
| 34 |
|
xp2nd |
|- ( w e. ( X X. Y ) -> ( 2nd ` w ) e. Y ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. Y ) |
| 36 |
9
|
eqcomd |
|- ( ph -> ( A u. B ) = C ) |
| 37 |
|
uneqdifeq |
|- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
| 38 |
25 10 37
|
syl2anc |
|- ( ph -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
| 39 |
36 38
|
mpbid |
|- ( ph -> ( C \ A ) = B ) |
| 40 |
39
|
ixpeq1d |
|- ( ph -> X_ k e. ( C \ A ) U. ( F ` k ) = X_ k e. B U. ( F ` k ) ) |
| 41 |
|
ixpeq2 |
|- ( A. k e. B U. ( ( F |` B ) ` k ) = U. ( F ` k ) -> X_ k e. B U. ( ( F |` B ) ` k ) = X_ k e. B U. ( F ` k ) ) |
| 42 |
|
fvres |
|- ( k e. B -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
| 43 |
42
|
unieqd |
|- ( k e. B -> U. ( ( F |` B ) ` k ) = U. ( F ` k ) ) |
| 44 |
41 43
|
mprg |
|- X_ k e. B U. ( ( F |` B ) ` k ) = X_ k e. B U. ( F ` k ) |
| 45 |
|
ssun2 |
|- B C_ ( A u. B ) |
| 46 |
45 9
|
sseqtrrid |
|- ( ph -> B C_ C ) |
| 47 |
7 46
|
ssexd |
|- ( ph -> B e. _V ) |
| 48 |
8 46
|
fssresd |
|- ( ph -> ( F |` B ) : B --> Top ) |
| 49 |
5
|
ptuni |
|- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> X_ k e. B U. ( ( F |` B ) ` k ) = U. L ) |
| 50 |
47 48 49
|
syl2anc |
|- ( ph -> X_ k e. B U. ( ( F |` B ) ` k ) = U. L ) |
| 51 |
44 50
|
eqtr3id |
|- ( ph -> X_ k e. B U. ( F ` k ) = U. L ) |
| 52 |
51 2
|
eqtr4di |
|- ( ph -> X_ k e. B U. ( F ` k ) = Y ) |
| 53 |
40 52
|
eqtrd |
|- ( ph -> X_ k e. ( C \ A ) U. ( F ` k ) = Y ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. ( C \ A ) U. ( F ` k ) = Y ) |
| 55 |
35 54
|
eleqtrrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. X_ k e. ( C \ A ) U. ( F ` k ) ) |
| 56 |
25
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> A C_ C ) |
| 57 |
|
undifixp |
|- ( ( ( 1st ` w ) e. X_ k e. A U. ( F ` k ) /\ ( 2nd ` w ) e. X_ k e. ( C \ A ) U. ( F ` k ) /\ A C_ C ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. X_ k e. C U. ( F ` k ) ) |
| 58 |
33 55 56 57
|
syl3anc |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. X_ k e. C U. ( F ` k ) ) |
| 59 |
3
|
ptuni |
|- ( ( C e. V /\ F : C --> Top ) -> X_ k e. C U. ( F ` k ) = U. J ) |
| 60 |
7 8 59
|
syl2anc |
|- ( ph -> X_ k e. C U. ( F ` k ) = U. J ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. C U. ( F ` k ) = U. J ) |
| 62 |
58 61
|
eleqtrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. U. J ) |
| 63 |
25
|
adantr |
|- ( ( ph /\ z e. U. J ) -> A C_ C ) |
| 64 |
60
|
eleq2d |
|- ( ph -> ( z e. X_ k e. C U. ( F ` k ) <-> z e. U. J ) ) |
| 65 |
64
|
biimpar |
|- ( ( ph /\ z e. U. J ) -> z e. X_ k e. C U. ( F ` k ) ) |
| 66 |
|
resixp |
|- ( ( A C_ C /\ z e. X_ k e. C U. ( F ` k ) ) -> ( z |` A ) e. X_ k e. A U. ( F ` k ) ) |
| 67 |
63 65 66
|
syl2anc |
|- ( ( ph /\ z e. U. J ) -> ( z |` A ) e. X_ k e. A U. ( F ` k ) ) |
| 68 |
31
|
adantr |
|- ( ( ph /\ z e. U. J ) -> X_ k e. A U. ( F ` k ) = X ) |
| 69 |
67 68
|
eleqtrd |
|- ( ( ph /\ z e. U. J ) -> ( z |` A ) e. X ) |
| 70 |
46
|
adantr |
|- ( ( ph /\ z e. U. J ) -> B C_ C ) |
| 71 |
|
resixp |
|- ( ( B C_ C /\ z e. X_ k e. C U. ( F ` k ) ) -> ( z |` B ) e. X_ k e. B U. ( F ` k ) ) |
| 72 |
70 65 71
|
syl2anc |
|- ( ( ph /\ z e. U. J ) -> ( z |` B ) e. X_ k e. B U. ( F ` k ) ) |
| 73 |
52
|
adantr |
|- ( ( ph /\ z e. U. J ) -> X_ k e. B U. ( F ` k ) = Y ) |
| 74 |
72 73
|
eleqtrd |
|- ( ( ph /\ z e. U. J ) -> ( z |` B ) e. Y ) |
| 75 |
69 74
|
opelxpd |
|- ( ( ph /\ z e. U. J ) -> <. ( z |` A ) , ( z |` B ) >. e. ( X X. Y ) ) |
| 76 |
|
eqop |
|- ( w e. ( X X. Y ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
| 77 |
76
|
ad2antrl |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
| 78 |
65
|
adantrl |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z e. X_ k e. C U. ( F ` k ) ) |
| 79 |
|
ixpfn |
|- ( z e. X_ k e. C U. ( F ` k ) -> z Fn C ) |
| 80 |
|
fnresdm |
|- ( z Fn C -> ( z |` C ) = z ) |
| 81 |
78 79 80
|
3syl |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z |` C ) = z ) |
| 82 |
9
|
reseq2d |
|- ( ph -> ( z |` C ) = ( z |` ( A u. B ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z |` C ) = ( z |` ( A u. B ) ) ) |
| 84 |
81 83
|
eqtr3d |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z = ( z |` ( A u. B ) ) ) |
| 85 |
|
resundi |
|- ( z |` ( A u. B ) ) = ( ( z |` A ) u. ( z |` B ) ) |
| 86 |
84 85
|
eqtrdi |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z = ( ( z |` A ) u. ( z |` B ) ) ) |
| 87 |
|
uneq12 |
|- ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) = ( ( z |` A ) u. ( z |` B ) ) ) |
| 88 |
87
|
eqeq2d |
|- ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) <-> z = ( ( z |` A ) u. ( z |` B ) ) ) ) |
| 89 |
86 88
|
syl5ibrcom |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 90 |
|
ixpfn |
|- ( ( 1st ` w ) e. X_ k e. A U. ( F ` k ) -> ( 1st ` w ) Fn A ) |
| 91 |
33 90
|
syl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) Fn A ) |
| 92 |
91
|
adantrr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) Fn A ) |
| 93 |
|
dffn2 |
|- ( ( 1st ` w ) Fn A <-> ( 1st ` w ) : A --> _V ) |
| 94 |
92 93
|
sylib |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) : A --> _V ) |
| 95 |
52
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. B U. ( F ` k ) = Y ) |
| 96 |
35 95
|
eleqtrrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. X_ k e. B U. ( F ` k ) ) |
| 97 |
|
ixpfn |
|- ( ( 2nd ` w ) e. X_ k e. B U. ( F ` k ) -> ( 2nd ` w ) Fn B ) |
| 98 |
96 97
|
syl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) Fn B ) |
| 99 |
98
|
adantrr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) Fn B ) |
| 100 |
|
dffn2 |
|- ( ( 2nd ` w ) Fn B <-> ( 2nd ` w ) : B --> _V ) |
| 101 |
99 100
|
sylib |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) : B --> _V ) |
| 102 |
|
res0 |
|- ( ( 1st ` w ) |` (/) ) = (/) |
| 103 |
|
res0 |
|- ( ( 2nd ` w ) |` (/) ) = (/) |
| 104 |
102 103
|
eqtr4i |
|- ( ( 1st ` w ) |` (/) ) = ( ( 2nd ` w ) |` (/) ) |
| 105 |
10
|
adantr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( A i^i B ) = (/) ) |
| 106 |
105
|
reseq2d |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 1st ` w ) |` (/) ) ) |
| 107 |
105
|
reseq2d |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 2nd ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` (/) ) ) |
| 108 |
104 106 107
|
3eqtr4a |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) |
| 109 |
|
fresaunres1 |
|- ( ( ( 1st ` w ) : A --> _V /\ ( 2nd ` w ) : B --> _V /\ ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) = ( 1st ` w ) ) |
| 110 |
94 101 108 109
|
syl3anc |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) = ( 1st ` w ) ) |
| 111 |
110
|
eqcomd |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) |
| 112 |
|
fresaunres2 |
|- ( ( ( 1st ` w ) : A --> _V /\ ( 2nd ` w ) : B --> _V /\ ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) = ( 2nd ` w ) ) |
| 113 |
94 101 108 112
|
syl3anc |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) = ( 2nd ` w ) ) |
| 114 |
113
|
eqcomd |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) |
| 115 |
111 114
|
jca |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) /\ ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) |
| 116 |
|
reseq1 |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( z |` A ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) |
| 117 |
116
|
eqeq2d |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 1st ` w ) = ( z |` A ) <-> ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) ) |
| 118 |
|
reseq1 |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( z |` B ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) |
| 119 |
118
|
eqeq2d |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 2nd ` w ) = ( z |` B ) <-> ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) |
| 120 |
117 119
|
anbi12d |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) <-> ( ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) /\ ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) ) |
| 121 |
115 120
|
syl5ibrcom |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
| 122 |
89 121
|
impbid |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) <-> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 123 |
77 122
|
bitrd |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 124 |
17 62 75 123
|
f1ocnv2d |
|- ( ph -> ( G : ( X X. Y ) -1-1-onto-> U. J /\ `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) ) |
| 125 |
124
|
simprd |
|- ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) |