| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptunhmeo.x |
|- X = U. K |
| 2 |
|
ptunhmeo.y |
|- Y = U. L |
| 3 |
|
ptunhmeo.j |
|- J = ( Xt_ ` F ) |
| 4 |
|
ptunhmeo.k |
|- K = ( Xt_ ` ( F |` A ) ) |
| 5 |
|
ptunhmeo.l |
|- L = ( Xt_ ` ( F |` B ) ) |
| 6 |
|
ptunhmeo.g |
|- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
| 7 |
|
ptunhmeo.c |
|- ( ph -> C e. V ) |
| 8 |
|
ptunhmeo.f |
|- ( ph -> F : C --> Top ) |
| 9 |
|
ptunhmeo.u |
|- ( ph -> C = ( A u. B ) ) |
| 10 |
|
ptunhmeo.i |
|- ( ph -> ( A i^i B ) = (/) ) |
| 11 |
|
vex |
|- x e. _V |
| 12 |
|
vex |
|- y e. _V |
| 13 |
11 12
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 14 |
11 12
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 15 |
13 14
|
uneq12d |
|- ( z = <. x , y >. -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( x u. y ) ) |
| 16 |
15
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) = ( x e. X , y e. Y |-> ( x u. y ) ) |
| 17 |
6 16
|
eqtr4i |
|- G = ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) |
| 18 |
|
xp1st |
|- ( z e. ( X X. Y ) -> ( 1st ` z ) e. X ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) e. X ) |
| 20 |
|
ixpeq2 |
|- ( A. n e. A U. ( ( F |` A ) ` n ) = U. ( F ` n ) -> X_ n e. A U. ( ( F |` A ) ` n ) = X_ n e. A U. ( F ` n ) ) |
| 21 |
|
fvres |
|- ( n e. A -> ( ( F |` A ) ` n ) = ( F ` n ) ) |
| 22 |
21
|
unieqd |
|- ( n e. A -> U. ( ( F |` A ) ` n ) = U. ( F ` n ) ) |
| 23 |
20 22
|
mprg |
|- X_ n e. A U. ( ( F |` A ) ` n ) = X_ n e. A U. ( F ` n ) |
| 24 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 25 |
24 9
|
sseqtrrid |
|- ( ph -> A C_ C ) |
| 26 |
7 25
|
ssexd |
|- ( ph -> A e. _V ) |
| 27 |
8 25
|
fssresd |
|- ( ph -> ( F |` A ) : A --> Top ) |
| 28 |
4
|
ptuni |
|- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> X_ n e. A U. ( ( F |` A ) ` n ) = U. K ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ph -> X_ n e. A U. ( ( F |` A ) ` n ) = U. K ) |
| 30 |
23 29
|
eqtr3id |
|- ( ph -> X_ n e. A U. ( F ` n ) = U. K ) |
| 31 |
30 1
|
eqtr4di |
|- ( ph -> X_ n e. A U. ( F ` n ) = X ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. A U. ( F ` n ) = X ) |
| 33 |
19 32
|
eleqtrrd |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) e. X_ n e. A U. ( F ` n ) ) |
| 34 |
|
xp2nd |
|- ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. Y ) |
| 36 |
9
|
eqcomd |
|- ( ph -> ( A u. B ) = C ) |
| 37 |
|
uneqdifeq |
|- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
| 38 |
25 10 37
|
syl2anc |
|- ( ph -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
| 39 |
36 38
|
mpbid |
|- ( ph -> ( C \ A ) = B ) |
| 40 |
39
|
ixpeq1d |
|- ( ph -> X_ n e. ( C \ A ) U. ( F ` n ) = X_ n e. B U. ( F ` n ) ) |
| 41 |
|
ixpeq2 |
|- ( A. n e. B U. ( ( F |` B ) ` n ) = U. ( F ` n ) -> X_ n e. B U. ( ( F |` B ) ` n ) = X_ n e. B U. ( F ` n ) ) |
| 42 |
|
fvres |
|- ( n e. B -> ( ( F |` B ) ` n ) = ( F ` n ) ) |
| 43 |
42
|
unieqd |
|- ( n e. B -> U. ( ( F |` B ) ` n ) = U. ( F ` n ) ) |
| 44 |
41 43
|
mprg |
|- X_ n e. B U. ( ( F |` B ) ` n ) = X_ n e. B U. ( F ` n ) |
| 45 |
|
ssun2 |
|- B C_ ( A u. B ) |
| 46 |
45 9
|
sseqtrrid |
|- ( ph -> B C_ C ) |
| 47 |
7 46
|
ssexd |
|- ( ph -> B e. _V ) |
| 48 |
8 46
|
fssresd |
|- ( ph -> ( F |` B ) : B --> Top ) |
| 49 |
5
|
ptuni |
|- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> X_ n e. B U. ( ( F |` B ) ` n ) = U. L ) |
| 50 |
47 48 49
|
syl2anc |
|- ( ph -> X_ n e. B U. ( ( F |` B ) ` n ) = U. L ) |
| 51 |
44 50
|
eqtr3id |
|- ( ph -> X_ n e. B U. ( F ` n ) = U. L ) |
| 52 |
51 2
|
eqtr4di |
|- ( ph -> X_ n e. B U. ( F ` n ) = Y ) |
| 53 |
40 52
|
eqtrd |
|- ( ph -> X_ n e. ( C \ A ) U. ( F ` n ) = Y ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. ( C \ A ) U. ( F ` n ) = Y ) |
| 55 |
35 54
|
eleqtrrd |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. X_ n e. ( C \ A ) U. ( F ` n ) ) |
| 56 |
25
|
adantr |
|- ( ( ph /\ z e. ( X X. Y ) ) -> A C_ C ) |
| 57 |
|
undifixp |
|- ( ( ( 1st ` z ) e. X_ n e. A U. ( F ` n ) /\ ( 2nd ` z ) e. X_ n e. ( C \ A ) U. ( F ` n ) /\ A C_ C ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) ) |
| 58 |
33 55 56 57
|
syl3anc |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) ) |
| 59 |
|
ixpfn |
|- ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C ) |
| 60 |
58 59
|
syl |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C ) |
| 61 |
|
dffn5 |
|- ( ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C <-> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) |
| 62 |
60 61
|
sylib |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) |
| 63 |
62
|
mpteq2dva |
|- ( ph -> ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) = ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) ) |
| 64 |
17 63
|
eqtrid |
|- ( ph -> G = ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) ) |
| 65 |
|
pttop |
|- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> ( Xt_ ` ( F |` A ) ) e. Top ) |
| 66 |
26 27 65
|
syl2anc |
|- ( ph -> ( Xt_ ` ( F |` A ) ) e. Top ) |
| 67 |
4 66
|
eqeltrid |
|- ( ph -> K e. Top ) |
| 68 |
1
|
toptopon |
|- ( K e. Top <-> K e. ( TopOn ` X ) ) |
| 69 |
67 68
|
sylib |
|- ( ph -> K e. ( TopOn ` X ) ) |
| 70 |
|
pttop |
|- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> ( Xt_ ` ( F |` B ) ) e. Top ) |
| 71 |
47 48 70
|
syl2anc |
|- ( ph -> ( Xt_ ` ( F |` B ) ) e. Top ) |
| 72 |
5 71
|
eqeltrid |
|- ( ph -> L e. Top ) |
| 73 |
2
|
toptopon |
|- ( L e. Top <-> L e. ( TopOn ` Y ) ) |
| 74 |
72 73
|
sylib |
|- ( ph -> L e. ( TopOn ` Y ) ) |
| 75 |
|
txtopon |
|- ( ( K e. ( TopOn ` X ) /\ L e. ( TopOn ` Y ) ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 76 |
69 74 75
|
syl2anc |
|- ( ph -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 77 |
9
|
eleq2d |
|- ( ph -> ( k e. C <-> k e. ( A u. B ) ) ) |
| 78 |
77
|
biimpa |
|- ( ( ph /\ k e. C ) -> k e. ( A u. B ) ) |
| 79 |
|
elun |
|- ( k e. ( A u. B ) <-> ( k e. A \/ k e. B ) ) |
| 80 |
78 79
|
sylib |
|- ( ( ph /\ k e. C ) -> ( k e. A \/ k e. B ) ) |
| 81 |
|
ixpfn |
|- ( ( 1st ` z ) e. X_ n e. A U. ( F ` n ) -> ( 1st ` z ) Fn A ) |
| 82 |
33 81
|
syl |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) |
| 83 |
82
|
adantlr |
|- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) |
| 84 |
52
|
adantr |
|- ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. B U. ( F ` n ) = Y ) |
| 85 |
35 84
|
eleqtrrd |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. X_ n e. B U. ( F ` n ) ) |
| 86 |
|
ixpfn |
|- ( ( 2nd ` z ) e. X_ n e. B U. ( F ` n ) -> ( 2nd ` z ) Fn B ) |
| 87 |
85 86
|
syl |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) |
| 88 |
87
|
adantlr |
|- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) |
| 89 |
10
|
ad2antrr |
|- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( A i^i B ) = (/) ) |
| 90 |
|
simplr |
|- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> k e. A ) |
| 91 |
|
fvun1 |
|- ( ( ( 1st ` z ) Fn A /\ ( 2nd ` z ) Fn B /\ ( ( A i^i B ) = (/) /\ k e. A ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 1st ` z ) ` k ) ) |
| 92 |
83 88 89 90 91
|
syl112anc |
|- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 1st ` z ) ` k ) ) |
| 93 |
92
|
mpteq2dva |
|- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) = ( z e. ( X X. Y ) |-> ( ( 1st ` z ) ` k ) ) ) |
| 94 |
76
|
adantr |
|- ( ( ph /\ k e. A ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 95 |
13
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) |
| 96 |
69
|
adantr |
|- ( ( ph /\ k e. A ) -> K e. ( TopOn ` X ) ) |
| 97 |
74
|
adantr |
|- ( ( ph /\ k e. A ) -> L e. ( TopOn ` Y ) ) |
| 98 |
96 97
|
cnmpt1st |
|- ( ( ph /\ k e. A ) -> ( x e. X , y e. Y |-> x ) e. ( ( K tX L ) Cn K ) ) |
| 99 |
95 98
|
eqeltrid |
|- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( K tX L ) Cn K ) ) |
| 100 |
26
|
adantr |
|- ( ( ph /\ k e. A ) -> A e. _V ) |
| 101 |
27
|
adantr |
|- ( ( ph /\ k e. A ) -> ( F |` A ) : A --> Top ) |
| 102 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
| 103 |
1 4
|
ptpjcn |
|- ( ( A e. _V /\ ( F |` A ) : A --> Top /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( ( F |` A ) ` k ) ) ) |
| 104 |
100 101 102 103
|
syl3anc |
|- ( ( ph /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( ( F |` A ) ` k ) ) ) |
| 105 |
|
fvres |
|- ( k e. A -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
| 106 |
105
|
adantl |
|- ( ( ph /\ k e. A ) -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
| 107 |
106
|
oveq2d |
|- ( ( ph /\ k e. A ) -> ( K Cn ( ( F |` A ) ` k ) ) = ( K Cn ( F ` k ) ) ) |
| 108 |
104 107
|
eleqtrd |
|- ( ( ph /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( F ` k ) ) ) |
| 109 |
|
fveq1 |
|- ( f = ( 1st ` z ) -> ( f ` k ) = ( ( 1st ` z ) ` k ) ) |
| 110 |
94 99 96 108 109
|
cnmpt11 |
|- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( 1st ` z ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 111 |
93 110
|
eqeltrd |
|- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 112 |
82
|
adantlr |
|- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) |
| 113 |
87
|
adantlr |
|- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) |
| 114 |
10
|
ad2antrr |
|- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( A i^i B ) = (/) ) |
| 115 |
|
simplr |
|- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> k e. B ) |
| 116 |
|
fvun2 |
|- ( ( ( 1st ` z ) Fn A /\ ( 2nd ` z ) Fn B /\ ( ( A i^i B ) = (/) /\ k e. B ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 2nd ` z ) ` k ) ) |
| 117 |
112 113 114 115 116
|
syl112anc |
|- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 2nd ` z ) ` k ) ) |
| 118 |
117
|
mpteq2dva |
|- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) = ( z e. ( X X. Y ) |-> ( ( 2nd ` z ) ` k ) ) ) |
| 119 |
76
|
adantr |
|- ( ( ph /\ k e. B ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 120 |
14
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) = ( x e. X , y e. Y |-> y ) |
| 121 |
69
|
adantr |
|- ( ( ph /\ k e. B ) -> K e. ( TopOn ` X ) ) |
| 122 |
74
|
adantr |
|- ( ( ph /\ k e. B ) -> L e. ( TopOn ` Y ) ) |
| 123 |
121 122
|
cnmpt2nd |
|- ( ( ph /\ k e. B ) -> ( x e. X , y e. Y |-> y ) e. ( ( K tX L ) Cn L ) ) |
| 124 |
120 123
|
eqeltrid |
|- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( K tX L ) Cn L ) ) |
| 125 |
47
|
adantr |
|- ( ( ph /\ k e. B ) -> B e. _V ) |
| 126 |
48
|
adantr |
|- ( ( ph /\ k e. B ) -> ( F |` B ) : B --> Top ) |
| 127 |
|
simpr |
|- ( ( ph /\ k e. B ) -> k e. B ) |
| 128 |
2 5
|
ptpjcn |
|- ( ( B e. _V /\ ( F |` B ) : B --> Top /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( ( F |` B ) ` k ) ) ) |
| 129 |
125 126 127 128
|
syl3anc |
|- ( ( ph /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( ( F |` B ) ` k ) ) ) |
| 130 |
|
fvres |
|- ( k e. B -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
| 131 |
130
|
adantl |
|- ( ( ph /\ k e. B ) -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
| 132 |
131
|
oveq2d |
|- ( ( ph /\ k e. B ) -> ( L Cn ( ( F |` B ) ` k ) ) = ( L Cn ( F ` k ) ) ) |
| 133 |
129 132
|
eleqtrd |
|- ( ( ph /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( F ` k ) ) ) |
| 134 |
|
fveq1 |
|- ( f = ( 2nd ` z ) -> ( f ` k ) = ( ( 2nd ` z ) ` k ) ) |
| 135 |
119 124 122 133 134
|
cnmpt11 |
|- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( 2nd ` z ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 136 |
118 135
|
eqeltrd |
|- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 137 |
111 136
|
jaodan |
|- ( ( ph /\ ( k e. A \/ k e. B ) ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 138 |
80 137
|
syldan |
|- ( ( ph /\ k e. C ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 139 |
3 76 7 8 138
|
ptcn |
|- ( ph -> ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) e. ( ( K tX L ) Cn J ) ) |
| 140 |
64 139
|
eqeltrd |
|- ( ph -> G e. ( ( K tX L ) Cn J ) ) |
| 141 |
1 2 3 4 5 6 7 8 9 10
|
ptuncnv |
|- ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) |
| 142 |
|
pttop |
|- ( ( C e. V /\ F : C --> Top ) -> ( Xt_ ` F ) e. Top ) |
| 143 |
7 8 142
|
syl2anc |
|- ( ph -> ( Xt_ ` F ) e. Top ) |
| 144 |
3 143
|
eqeltrid |
|- ( ph -> J e. Top ) |
| 145 |
|
eqid |
|- U. J = U. J |
| 146 |
145
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 147 |
144 146
|
sylib |
|- ( ph -> J e. ( TopOn ` U. J ) ) |
| 148 |
145 3 4
|
ptrescn |
|- ( ( C e. V /\ F : C --> Top /\ A C_ C ) -> ( z e. U. J |-> ( z |` A ) ) e. ( J Cn K ) ) |
| 149 |
7 8 25 148
|
syl3anc |
|- ( ph -> ( z e. U. J |-> ( z |` A ) ) e. ( J Cn K ) ) |
| 150 |
145 3 5
|
ptrescn |
|- ( ( C e. V /\ F : C --> Top /\ B C_ C ) -> ( z e. U. J |-> ( z |` B ) ) e. ( J Cn L ) ) |
| 151 |
7 8 46 150
|
syl3anc |
|- ( ph -> ( z e. U. J |-> ( z |` B ) ) e. ( J Cn L ) ) |
| 152 |
147 149 151
|
cnmpt1t |
|- ( ph -> ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) e. ( J Cn ( K tX L ) ) ) |
| 153 |
141 152
|
eqeltrd |
|- ( ph -> `' G e. ( J Cn ( K tX L ) ) ) |
| 154 |
|
ishmeo |
|- ( G e. ( ( K tX L ) Homeo J ) <-> ( G e. ( ( K tX L ) Cn J ) /\ `' G e. ( J Cn ( K tX L ) ) ) ) |
| 155 |
140 153 154
|
sylanbrc |
|- ( ph -> G e. ( ( K tX L ) Homeo J ) ) |